Loading…
Downregulation of miR-145-5p elevates retinal ganglion cell survival to delay diabetic retinopathy progress by targeting FGF5
Diabetic retinopathy (DR) is a leading cause of new-onset blindness. Recent studies showed that protecting retinal ganglion cells (RGCs) from high glucose-induced injury is a promising strategy for delaying DR. This study is to investigate the role of miR-145-5p in high glucose-induced RGC injury. H...
Saved in:
Published in: | Bioscience, biotechnology, and biochemistry biotechnology, and biochemistry, 2019-09, Vol.83 (9), p.1655-1662 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Diabetic retinopathy (DR) is a leading cause of new-onset blindness. Recent studies showed that protecting retinal ganglion cells (RGCs) from high glucose-induced injury is a promising strategy for delaying DR. This study is to investigate the role of miR-145-5p in high glucose-induced RGC injury. Here, RGCs were randomly divided into low glucose and high glucose groups. PCR assay showed miR-145-5p was significantly upregulated in high glucose group. Transfection of miR-145-5p inhibitor decreased pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) levels, elevated cell viability and proliferation, as well as suppressed cell apoptosis by ELISA, MTT, EdU proliferation, colony formation and flow cytometry assays, respectively. Moreover, dual-luciferase reporter assay confirmed FGF5 as a target gene of miR-145-5p. FGF5 knockdown could partially reverse the protective effects of miR-145-5p on RGC-5 cells. In conclusion, our results demonstrated that inhibition of miR-145-5p might be a neuroprotective target for diabetes mellitus-related DR.
Abbreviations: DR: diabetic retinopathy; RGCs: retinal ganglion cells; miR-145-5p: microRNA-145-5p; TNF-α: tumor necrosis factor-α; IL-6: interleukin-6; FGF: fibroblast growth factor; ATCC: American Type Culture Collection; WT: wild type; MUT: mutant type
Inhibition of miR-145-5p could protect retinal ganglion cells against high glucose at least in part through up-regulating FGF5 expression. |
---|---|
ISSN: | 0916-8451 1347-6947 |
DOI: | 10.1080/09168451.2019.1630251 |