Loading…
Maternal ageing impairs mitochondrial DNA kinetics during early embryogenesis in mice
Does ageing affect the kinetics of the mitochondrial pool during oogenesis and early embryogenesis? While we found no age-related change during oogenesis, the kinetics of mitochondrial DNA content and the expression of the factors involved in mitochondrial biogenesis appeared to be significantly alt...
Saved in:
Published in: | Human reproduction (Oxford) 2019-07, Vol.34 (7), p.1313-1324 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Does ageing affect the kinetics of the mitochondrial pool during oogenesis and early embryogenesis?
While we found no age-related change during oogenesis, the kinetics of mitochondrial DNA content and the expression of the factors involved in mitochondrial biogenesis appeared to be significantly altered during embryogenesis.
Oocyte mitochondria are necessary for embryonic development. The morphological and functional alterations of mitochondria, as well as the qualitative and quantitative mtDNA anomalies, observed during ovarian ageing may be responsible for the alteration of oocyte competence and embryonic development.
The study, conducted from November 2016 to November 2017, used 40 mice aged 5-8 weeks and 45 mice aged 9-11 months (C57Bl6/CBA F(1)). A total of 488 immature oocytes, with a diameter ranging from 20 μm to more than 80 μm, were collected from ovaries, and 1088 mature oocytes or embryos at different developmental stages (two PN, one-cell, i.e. syngamy, two-cell, four-cell, eight-cell, morula and blastocyst) were obtained after ovarian stimulation and, for embryos, mating.
Mitochondrial DNA was quantified by quantitative PCR. We used quantitative reverse transcriptase PCR (RT-PCR) (microfluidic method) to study the relative expression of three genes involved in the key steps of embryogenesis, i.e. embryonic genome activation (HSPA1) and differentiation (CDX2 and NANOG), two mtDNA genes (CYB and ND2) and five genes essential for mitochondrial biogenesis (PPARGC1A, NRF1, POLG, TFAM and PRKAA). The statistical analysis was based on mixed linear regression models applying a logistic link function (STATA v13.1 software), with values of P |
---|---|
ISSN: | 0268-1161 1460-2350 |
DOI: | 10.1093/humrep/dez054 |