Loading…

Morphological Murals: The Scaling and Allometry of Butterfly Wing Patterns

The color patterns of butterflies moths are exceptionally diverse, but are very stable within a species, so that most species can be identified on the basis of their color pattern alone. The color pattern is established in the wing imaginal disc during a prolonged period of growth and differentiatio...

Full description

Saved in:
Bibliographic Details
Published in:Integrative and comparative biology 2019-11, Vol.59 (5), p.1281-1289
Main Authors: Palmer, Rayleigh, McKenna, Kenneth Z., Nijhout, H. F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The color patterns of butterflies moths are exceptionally diverse, but are very stable within a species, so that most species can be identified on the basis of their color pattern alone. The color pattern is established in the wing imaginal disc during a prolonged period of growth and differentiation, beginning during the last larval instar and ending during the first few days of the pupal stage. During this period, a variety of diffusion and reaction–diffusion signaling mechanisms determine the positions and sizes of the various elements that make up the overall color pattern. The patterning occurs while the wing is growing from a small imaginal disc to a very large pupal wing. One would therefore expect that some or all aspects of the color pattern would be sensitive to the size of the developmental field on which pattern formation takes place. To study this possibility, we analyzed the color patterns of Junonia coenia from animals whose growth patterns were altered by periodic starvation during larval growth, which produced individuals with a large range of variation in body size and wing size. Analyses of the color patterns showed that the positions and size of the pattern elements scaled perfectly isometrically with wing size. This is a puzzling finding and suggests the operation of a homeostatic or robustness mechanism that stabilizes pattern in spite of variation in the growth rate and final size of the wing.
ISSN:1540-7063
1557-7023
DOI:10.1093/icb/icz123