Loading…
Temperature and composition induced morphology transition of Cerberus emulsion droplets
[Display omitted] Various advanced geometries are endowed by the unique structure of “three rooms” of immiscible oils composing the Cerberus droplets. Adjustable interfacial properties and tunable volume ratio in the four-liquid system render it possible to realize the controlled morphology transiti...
Saved in:
Published in: | Journal of colloid and interface science 2019-10, Vol.554, p.210-219 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
Various advanced geometries are endowed by the unique structure of “three rooms” of immiscible oils composing the Cerberus droplets. Adjustable interfacial properties and tunable volume ratio in the four-liquid system render it possible to realize the controlled morphology transition by the variation of temperature and emulsion composition.
Cerberus emulsions are prepared in batch scale by traditional one-step vortex mixing, employing the oil combinations of methacryloxypropyl dimethyl silicone (DMS)/2-(perfluorooctyl) ethyl methacrylate (PFOEMA)/vegetable oil (VO). Emulsifier of pluoronic F127, a temperature sensitive surfactant is applied. Stereoscopic topological phase diagram as functions of temperature and composition are plotted. Numerical calculations on the droplet morphology including interface curvature, contact angle, and volume fraction of each domain are performed.
Four primary regions with specific morphologies, i.e. “VO > DMS DMS > PFOEMA”, “VO PFOEMA”, and finally “VO |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2019.07.011 |