Loading…
Radiomics analysis enables recurrence prediction for hepatocellular carcinoma after liver transplantation
To assess whether radiomics signature can identify aggressive behavior and predict recurrence of hepatocellular carcinoma (HCC) after liver transplantation. Our study consisted of a training dataset (n = 93) and a validation dataset (40) with clinically confirmed HCC after liver transplantation from...
Saved in:
Published in: | European journal of radiology 2019-08, Vol.117, p.33-40 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c404t-7f9d7072c832b6858c025634dc411518e3c0b8684af7b2f6a15554e8fe36e6d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c404t-7f9d7072c832b6858c025634dc411518e3c0b8684af7b2f6a15554e8fe36e6d3 |
container_end_page | 40 |
container_issue | |
container_start_page | 33 |
container_title | European journal of radiology |
container_volume | 117 |
creator | Guo, Donghui Gu, Dongsheng Wang, Honghai Wei, Jingwei Wang, Zhenglu Hao, Xiaohan Ji, Qian Cao, Shunqi Song, Zhuolun Jiang, Jiabing Shen, Zhongyang Tian, Jie Zheng, Hong |
description | To assess whether radiomics signature can identify aggressive behavior and predict recurrence of hepatocellular carcinoma (HCC) after liver transplantation.
Our study consisted of a training dataset (n = 93) and a validation dataset (40) with clinically confirmed HCC after liver transplantation from October 2011 to December 2016. Radiomics features were extracted by delineating regions-of-interest (ROIs) around the lesion in four phases of CT images. A radiomics signature was generated using the least absolute shrinkage and selection operator (LASSO) Cox regression model. The association between radiomics signature and recurrence-free survival (RFS) was assessed. Preoperative clinical characteristics potentially associated with RFS were evaluated to develop a clinical model. A combined model incorporating clinical risk factors and radiomics signature was built.
The stable radiomics features associated with the recurrence of HCC were simply found in arterial phase and portal phase. The prediction model based on the radiomics features extracted from the arterial phase showed better prediction performance than the portal vein phase or the fusion signature combining both of arterial and portal vein phase. A radiomics nomogram based on combined model consisting of the radiomics signature and clinical risk factors showed good predictive performance for RFS with a C-index of 0.785 (95% confidence interval [CI]: 0.674-0.895) in the training dataset and 0.789 (95% CI: 0.620-0.957) in the validation dataset. The calibration curves showed agreement in both training (p = 0.121) and validation cohorts (p = 0.164).
Radiomics signature extracted from CT images may be a potential imaging biomarker for liver cancer invasion and enable accurate prediction of HCC recurrence after liver transplantation. |
doi_str_mv | 10.1016/j.ejrad.2019.05.010 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2258747748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0720048X19301792</els_id><sourcerecordid>2258747748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-7f9d7072c832b6858c025634dc411518e3c0b8684af7b2f6a15554e8fe36e6d3</originalsourceid><addsrcrecordid>eNp9kEFv1DAQhS0EokvbX4CEfOSSMHbs2HvggCpakCohoR64WRN7IrxK4mAnlfrvSdjCkcvM5b15bz7G3gqoBYj2w6mmU8ZQSxDHGnQNAl6wg7BGVsZI85IdwEioQNkfF-xNKScA0OooX7OLRjRgWg0HFr9jiGmMvnCccHgqsXCasBuo8Ex-zZkmT3zOFKJfYpp4nzL_STMuydMwrANm7jH7OKUROfYLZT7Ex20uGacyDzgtuBuv2Kseh0LXz_uSPdx-frj5Ut1_u_t68-m-8grUUpn-GMxW3NtGdq3V1oPUbaOCV0JoYanx0NnWKuxNJ_sWhdZake2paakNzSV7fz475_RrpbK4MZa9KU6U1uKk1NYoY5TdpM1Z6nMqJVPv5hxHzE9OgNsRu5P7g9jtiB1otyHeXO-eA9ZupPDP85fpJvh4FtD25WOk7IqPO8UQN6KLCyn-N-A3OhiP8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258747748</pqid></control><display><type>article</type><title>Radiomics analysis enables recurrence prediction for hepatocellular carcinoma after liver transplantation</title><source>Elsevier</source><creator>Guo, Donghui ; Gu, Dongsheng ; Wang, Honghai ; Wei, Jingwei ; Wang, Zhenglu ; Hao, Xiaohan ; Ji, Qian ; Cao, Shunqi ; Song, Zhuolun ; Jiang, Jiabing ; Shen, Zhongyang ; Tian, Jie ; Zheng, Hong</creator><creatorcontrib>Guo, Donghui ; Gu, Dongsheng ; Wang, Honghai ; Wei, Jingwei ; Wang, Zhenglu ; Hao, Xiaohan ; Ji, Qian ; Cao, Shunqi ; Song, Zhuolun ; Jiang, Jiabing ; Shen, Zhongyang ; Tian, Jie ; Zheng, Hong</creatorcontrib><description>To assess whether radiomics signature can identify aggressive behavior and predict recurrence of hepatocellular carcinoma (HCC) after liver transplantation.
Our study consisted of a training dataset (n = 93) and a validation dataset (40) with clinically confirmed HCC after liver transplantation from October 2011 to December 2016. Radiomics features were extracted by delineating regions-of-interest (ROIs) around the lesion in four phases of CT images. A radiomics signature was generated using the least absolute shrinkage and selection operator (LASSO) Cox regression model. The association between radiomics signature and recurrence-free survival (RFS) was assessed. Preoperative clinical characteristics potentially associated with RFS were evaluated to develop a clinical model. A combined model incorporating clinical risk factors and radiomics signature was built.
The stable radiomics features associated with the recurrence of HCC were simply found in arterial phase and portal phase. The prediction model based on the radiomics features extracted from the arterial phase showed better prediction performance than the portal vein phase or the fusion signature combining both of arterial and portal vein phase. A radiomics nomogram based on combined model consisting of the radiomics signature and clinical risk factors showed good predictive performance for RFS with a C-index of 0.785 (95% confidence interval [CI]: 0.674-0.895) in the training dataset and 0.789 (95% CI: 0.620-0.957) in the validation dataset. The calibration curves showed agreement in both training (p = 0.121) and validation cohorts (p = 0.164).
Radiomics signature extracted from CT images may be a potential imaging biomarker for liver cancer invasion and enable accurate prediction of HCC recurrence after liver transplantation.</description><identifier>ISSN: 0720-048X</identifier><identifier>EISSN: 1872-7727</identifier><identifier>DOI: 10.1016/j.ejrad.2019.05.010</identifier><identifier>PMID: 31307650</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Artificial intelligence ; Carcinoma, Hepatocellular - diagnostic imaging ; Carcinoma, Hepatocellular - pathology ; Hepatocellular carcinoma ; Humans ; Liver Neoplasms - diagnostic imaging ; Liver Neoplasms - pathology ; Liver Transplantation ; Neoplasm Recurrence, Local - diagnostic imaging ; Neoplasm Recurrence, Local - pathology ; Predictive Value of Tests ; Radiographic Image Interpretation, Computer-Assisted ; Recurrence ; Tomography, X-Ray Computed</subject><ispartof>European journal of radiology, 2019-08, Vol.117, p.33-40</ispartof><rights>2019 The Author(s)</rights><rights>Copyright © 2019 The Author(s). Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-7f9d7072c832b6858c025634dc411518e3c0b8684af7b2f6a15554e8fe36e6d3</citedby><cites>FETCH-LOGICAL-c404t-7f9d7072c832b6858c025634dc411518e3c0b8684af7b2f6a15554e8fe36e6d3</cites><orcidid>0000-0003-0498-0432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31307650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Donghui</creatorcontrib><creatorcontrib>Gu, Dongsheng</creatorcontrib><creatorcontrib>Wang, Honghai</creatorcontrib><creatorcontrib>Wei, Jingwei</creatorcontrib><creatorcontrib>Wang, Zhenglu</creatorcontrib><creatorcontrib>Hao, Xiaohan</creatorcontrib><creatorcontrib>Ji, Qian</creatorcontrib><creatorcontrib>Cao, Shunqi</creatorcontrib><creatorcontrib>Song, Zhuolun</creatorcontrib><creatorcontrib>Jiang, Jiabing</creatorcontrib><creatorcontrib>Shen, Zhongyang</creatorcontrib><creatorcontrib>Tian, Jie</creatorcontrib><creatorcontrib>Zheng, Hong</creatorcontrib><title>Radiomics analysis enables recurrence prediction for hepatocellular carcinoma after liver transplantation</title><title>European journal of radiology</title><addtitle>Eur J Radiol</addtitle><description>To assess whether radiomics signature can identify aggressive behavior and predict recurrence of hepatocellular carcinoma (HCC) after liver transplantation.
Our study consisted of a training dataset (n = 93) and a validation dataset (40) with clinically confirmed HCC after liver transplantation from October 2011 to December 2016. Radiomics features were extracted by delineating regions-of-interest (ROIs) around the lesion in four phases of CT images. A radiomics signature was generated using the least absolute shrinkage and selection operator (LASSO) Cox regression model. The association between radiomics signature and recurrence-free survival (RFS) was assessed. Preoperative clinical characteristics potentially associated with RFS were evaluated to develop a clinical model. A combined model incorporating clinical risk factors and radiomics signature was built.
The stable radiomics features associated with the recurrence of HCC were simply found in arterial phase and portal phase. The prediction model based on the radiomics features extracted from the arterial phase showed better prediction performance than the portal vein phase or the fusion signature combining both of arterial and portal vein phase. A radiomics nomogram based on combined model consisting of the radiomics signature and clinical risk factors showed good predictive performance for RFS with a C-index of 0.785 (95% confidence interval [CI]: 0.674-0.895) in the training dataset and 0.789 (95% CI: 0.620-0.957) in the validation dataset. The calibration curves showed agreement in both training (p = 0.121) and validation cohorts (p = 0.164).
Radiomics signature extracted from CT images may be a potential imaging biomarker for liver cancer invasion and enable accurate prediction of HCC recurrence after liver transplantation.</description><subject>Artificial intelligence</subject><subject>Carcinoma, Hepatocellular - diagnostic imaging</subject><subject>Carcinoma, Hepatocellular - pathology</subject><subject>Hepatocellular carcinoma</subject><subject>Humans</subject><subject>Liver Neoplasms - diagnostic imaging</subject><subject>Liver Neoplasms - pathology</subject><subject>Liver Transplantation</subject><subject>Neoplasm Recurrence, Local - diagnostic imaging</subject><subject>Neoplasm Recurrence, Local - pathology</subject><subject>Predictive Value of Tests</subject><subject>Radiographic Image Interpretation, Computer-Assisted</subject><subject>Recurrence</subject><subject>Tomography, X-Ray Computed</subject><issn>0720-048X</issn><issn>1872-7727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEFv1DAQhS0EokvbX4CEfOSSMHbs2HvggCpakCohoR64WRN7IrxK4mAnlfrvSdjCkcvM5b15bz7G3gqoBYj2w6mmU8ZQSxDHGnQNAl6wg7BGVsZI85IdwEioQNkfF-xNKScA0OooX7OLRjRgWg0HFr9jiGmMvnCccHgqsXCasBuo8Ex-zZkmT3zOFKJfYpp4nzL_STMuydMwrANm7jH7OKUROfYLZT7Ex20uGacyDzgtuBuv2Kseh0LXz_uSPdx-frj5Ut1_u_t68-m-8grUUpn-GMxW3NtGdq3V1oPUbaOCV0JoYanx0NnWKuxNJ_sWhdZake2paakNzSV7fz475_RrpbK4MZa9KU6U1uKk1NYoY5TdpM1Z6nMqJVPv5hxHzE9OgNsRu5P7g9jtiB1otyHeXO-eA9ZupPDP85fpJvh4FtD25WOk7IqPO8UQN6KLCyn-N-A3OhiP8Q</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Guo, Donghui</creator><creator>Gu, Dongsheng</creator><creator>Wang, Honghai</creator><creator>Wei, Jingwei</creator><creator>Wang, Zhenglu</creator><creator>Hao, Xiaohan</creator><creator>Ji, Qian</creator><creator>Cao, Shunqi</creator><creator>Song, Zhuolun</creator><creator>Jiang, Jiabing</creator><creator>Shen, Zhongyang</creator><creator>Tian, Jie</creator><creator>Zheng, Hong</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0498-0432</orcidid></search><sort><creationdate>201908</creationdate><title>Radiomics analysis enables recurrence prediction for hepatocellular carcinoma after liver transplantation</title><author>Guo, Donghui ; Gu, Dongsheng ; Wang, Honghai ; Wei, Jingwei ; Wang, Zhenglu ; Hao, Xiaohan ; Ji, Qian ; Cao, Shunqi ; Song, Zhuolun ; Jiang, Jiabing ; Shen, Zhongyang ; Tian, Jie ; Zheng, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-7f9d7072c832b6858c025634dc411518e3c0b8684af7b2f6a15554e8fe36e6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>Carcinoma, Hepatocellular - diagnostic imaging</topic><topic>Carcinoma, Hepatocellular - pathology</topic><topic>Hepatocellular carcinoma</topic><topic>Humans</topic><topic>Liver Neoplasms - diagnostic imaging</topic><topic>Liver Neoplasms - pathology</topic><topic>Liver Transplantation</topic><topic>Neoplasm Recurrence, Local - diagnostic imaging</topic><topic>Neoplasm Recurrence, Local - pathology</topic><topic>Predictive Value of Tests</topic><topic>Radiographic Image Interpretation, Computer-Assisted</topic><topic>Recurrence</topic><topic>Tomography, X-Ray Computed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Donghui</creatorcontrib><creatorcontrib>Gu, Dongsheng</creatorcontrib><creatorcontrib>Wang, Honghai</creatorcontrib><creatorcontrib>Wei, Jingwei</creatorcontrib><creatorcontrib>Wang, Zhenglu</creatorcontrib><creatorcontrib>Hao, Xiaohan</creatorcontrib><creatorcontrib>Ji, Qian</creatorcontrib><creatorcontrib>Cao, Shunqi</creatorcontrib><creatorcontrib>Song, Zhuolun</creatorcontrib><creatorcontrib>Jiang, Jiabing</creatorcontrib><creatorcontrib>Shen, Zhongyang</creatorcontrib><creatorcontrib>Tian, Jie</creatorcontrib><creatorcontrib>Zheng, Hong</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Donghui</au><au>Gu, Dongsheng</au><au>Wang, Honghai</au><au>Wei, Jingwei</au><au>Wang, Zhenglu</au><au>Hao, Xiaohan</au><au>Ji, Qian</au><au>Cao, Shunqi</au><au>Song, Zhuolun</au><au>Jiang, Jiabing</au><au>Shen, Zhongyang</au><au>Tian, Jie</au><au>Zheng, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiomics analysis enables recurrence prediction for hepatocellular carcinoma after liver transplantation</atitle><jtitle>European journal of radiology</jtitle><addtitle>Eur J Radiol</addtitle><date>2019-08</date><risdate>2019</risdate><volume>117</volume><spage>33</spage><epage>40</epage><pages>33-40</pages><issn>0720-048X</issn><eissn>1872-7727</eissn><abstract>To assess whether radiomics signature can identify aggressive behavior and predict recurrence of hepatocellular carcinoma (HCC) after liver transplantation.
Our study consisted of a training dataset (n = 93) and a validation dataset (40) with clinically confirmed HCC after liver transplantation from October 2011 to December 2016. Radiomics features were extracted by delineating regions-of-interest (ROIs) around the lesion in four phases of CT images. A radiomics signature was generated using the least absolute shrinkage and selection operator (LASSO) Cox regression model. The association between radiomics signature and recurrence-free survival (RFS) was assessed. Preoperative clinical characteristics potentially associated with RFS were evaluated to develop a clinical model. A combined model incorporating clinical risk factors and radiomics signature was built.
The stable radiomics features associated with the recurrence of HCC were simply found in arterial phase and portal phase. The prediction model based on the radiomics features extracted from the arterial phase showed better prediction performance than the portal vein phase or the fusion signature combining both of arterial and portal vein phase. A radiomics nomogram based on combined model consisting of the radiomics signature and clinical risk factors showed good predictive performance for RFS with a C-index of 0.785 (95% confidence interval [CI]: 0.674-0.895) in the training dataset and 0.789 (95% CI: 0.620-0.957) in the validation dataset. The calibration curves showed agreement in both training (p = 0.121) and validation cohorts (p = 0.164).
Radiomics signature extracted from CT images may be a potential imaging biomarker for liver cancer invasion and enable accurate prediction of HCC recurrence after liver transplantation.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>31307650</pmid><doi>10.1016/j.ejrad.2019.05.010</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0498-0432</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0720-048X |
ispartof | European journal of radiology, 2019-08, Vol.117, p.33-40 |
issn | 0720-048X 1872-7727 |
language | eng |
recordid | cdi_proquest_miscellaneous_2258747748 |
source | Elsevier |
subjects | Artificial intelligence Carcinoma, Hepatocellular - diagnostic imaging Carcinoma, Hepatocellular - pathology Hepatocellular carcinoma Humans Liver Neoplasms - diagnostic imaging Liver Neoplasms - pathology Liver Transplantation Neoplasm Recurrence, Local - diagnostic imaging Neoplasm Recurrence, Local - pathology Predictive Value of Tests Radiographic Image Interpretation, Computer-Assisted Recurrence Tomography, X-Ray Computed |
title | Radiomics analysis enables recurrence prediction for hepatocellular carcinoma after liver transplantation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A27%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiomics%20analysis%20enables%20recurrence%20prediction%20for%20hepatocellular%20carcinoma%20after%20liver%20transplantation&rft.jtitle=European%20journal%20of%20radiology&rft.au=Guo,%20Donghui&rft.date=2019-08&rft.volume=117&rft.spage=33&rft.epage=40&rft.pages=33-40&rft.issn=0720-048X&rft.eissn=1872-7727&rft_id=info:doi/10.1016/j.ejrad.2019.05.010&rft_dat=%3Cproquest_cross%3E2258747748%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-7f9d7072c832b6858c025634dc411518e3c0b8684af7b2f6a15554e8fe36e6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2258747748&rft_id=info:pmid/31307650&rfr_iscdi=true |