Loading…

Radiomics analysis enables recurrence prediction for hepatocellular carcinoma after liver transplantation

To assess whether radiomics signature can identify aggressive behavior and predict recurrence of hepatocellular carcinoma (HCC) after liver transplantation. Our study consisted of a training dataset (n = 93) and a validation dataset (40) with clinically confirmed HCC after liver transplantation from...

Full description

Saved in:
Bibliographic Details
Published in:European journal of radiology 2019-08, Vol.117, p.33-40
Main Authors: Guo, Donghui, Gu, Dongsheng, Wang, Honghai, Wei, Jingwei, Wang, Zhenglu, Hao, Xiaohan, Ji, Qian, Cao, Shunqi, Song, Zhuolun, Jiang, Jiabing, Shen, Zhongyang, Tian, Jie, Zheng, Hong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c404t-7f9d7072c832b6858c025634dc411518e3c0b8684af7b2f6a15554e8fe36e6d3
cites cdi_FETCH-LOGICAL-c404t-7f9d7072c832b6858c025634dc411518e3c0b8684af7b2f6a15554e8fe36e6d3
container_end_page 40
container_issue
container_start_page 33
container_title European journal of radiology
container_volume 117
creator Guo, Donghui
Gu, Dongsheng
Wang, Honghai
Wei, Jingwei
Wang, Zhenglu
Hao, Xiaohan
Ji, Qian
Cao, Shunqi
Song, Zhuolun
Jiang, Jiabing
Shen, Zhongyang
Tian, Jie
Zheng, Hong
description To assess whether radiomics signature can identify aggressive behavior and predict recurrence of hepatocellular carcinoma (HCC) after liver transplantation. Our study consisted of a training dataset (n = 93) and a validation dataset (40) with clinically confirmed HCC after liver transplantation from October 2011 to December 2016. Radiomics features were extracted by delineating regions-of-interest (ROIs) around the lesion in four phases of CT images. A radiomics signature was generated using the least absolute shrinkage and selection operator (LASSO) Cox regression model. The association between radiomics signature and recurrence-free survival (RFS) was assessed. Preoperative clinical characteristics potentially associated with RFS were evaluated to develop a clinical model. A combined model incorporating clinical risk factors and radiomics signature was built. The stable radiomics features associated with the recurrence of HCC were simply found in arterial phase and portal phase. The prediction model based on the radiomics features extracted from the arterial phase showed better prediction performance than the portal vein phase or the fusion signature combining both of arterial and portal vein phase. A radiomics nomogram based on combined model consisting of the radiomics signature and clinical risk factors showed good predictive performance for RFS with a C-index of 0.785 (95% confidence interval [CI]: 0.674-0.895) in the training dataset and 0.789 (95% CI: 0.620-0.957) in the validation dataset. The calibration curves showed agreement in both training (p = 0.121) and validation cohorts (p = 0.164). Radiomics signature extracted from CT images may be a potential imaging biomarker for liver cancer invasion and enable accurate prediction of HCC recurrence after liver transplantation.
doi_str_mv 10.1016/j.ejrad.2019.05.010
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2258747748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0720048X19301792</els_id><sourcerecordid>2258747748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-7f9d7072c832b6858c025634dc411518e3c0b8684af7b2f6a15554e8fe36e6d3</originalsourceid><addsrcrecordid>eNp9kEFv1DAQhS0EokvbX4CEfOSSMHbs2HvggCpakCohoR64WRN7IrxK4mAnlfrvSdjCkcvM5b15bz7G3gqoBYj2w6mmU8ZQSxDHGnQNAl6wg7BGVsZI85IdwEioQNkfF-xNKScA0OooX7OLRjRgWg0HFr9jiGmMvnCccHgqsXCasBuo8Ex-zZkmT3zOFKJfYpp4nzL_STMuydMwrANm7jH7OKUROfYLZT7Ex20uGacyDzgtuBuv2Kseh0LXz_uSPdx-frj5Ut1_u_t68-m-8grUUpn-GMxW3NtGdq3V1oPUbaOCV0JoYanx0NnWKuxNJ_sWhdZake2paakNzSV7fz475_RrpbK4MZa9KU6U1uKk1NYoY5TdpM1Z6nMqJVPv5hxHzE9OgNsRu5P7g9jtiB1otyHeXO-eA9ZupPDP85fpJvh4FtD25WOk7IqPO8UQN6KLCyn-N-A3OhiP8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258747748</pqid></control><display><type>article</type><title>Radiomics analysis enables recurrence prediction for hepatocellular carcinoma after liver transplantation</title><source>Elsevier</source><creator>Guo, Donghui ; Gu, Dongsheng ; Wang, Honghai ; Wei, Jingwei ; Wang, Zhenglu ; Hao, Xiaohan ; Ji, Qian ; Cao, Shunqi ; Song, Zhuolun ; Jiang, Jiabing ; Shen, Zhongyang ; Tian, Jie ; Zheng, Hong</creator><creatorcontrib>Guo, Donghui ; Gu, Dongsheng ; Wang, Honghai ; Wei, Jingwei ; Wang, Zhenglu ; Hao, Xiaohan ; Ji, Qian ; Cao, Shunqi ; Song, Zhuolun ; Jiang, Jiabing ; Shen, Zhongyang ; Tian, Jie ; Zheng, Hong</creatorcontrib><description>To assess whether radiomics signature can identify aggressive behavior and predict recurrence of hepatocellular carcinoma (HCC) after liver transplantation. Our study consisted of a training dataset (n = 93) and a validation dataset (40) with clinically confirmed HCC after liver transplantation from October 2011 to December 2016. Radiomics features were extracted by delineating regions-of-interest (ROIs) around the lesion in four phases of CT images. A radiomics signature was generated using the least absolute shrinkage and selection operator (LASSO) Cox regression model. The association between radiomics signature and recurrence-free survival (RFS) was assessed. Preoperative clinical characteristics potentially associated with RFS were evaluated to develop a clinical model. A combined model incorporating clinical risk factors and radiomics signature was built. The stable radiomics features associated with the recurrence of HCC were simply found in arterial phase and portal phase. The prediction model based on the radiomics features extracted from the arterial phase showed better prediction performance than the portal vein phase or the fusion signature combining both of arterial and portal vein phase. A radiomics nomogram based on combined model consisting of the radiomics signature and clinical risk factors showed good predictive performance for RFS with a C-index of 0.785 (95% confidence interval [CI]: 0.674-0.895) in the training dataset and 0.789 (95% CI: 0.620-0.957) in the validation dataset. The calibration curves showed agreement in both training (p = 0.121) and validation cohorts (p = 0.164). Radiomics signature extracted from CT images may be a potential imaging biomarker for liver cancer invasion and enable accurate prediction of HCC recurrence after liver transplantation.</description><identifier>ISSN: 0720-048X</identifier><identifier>EISSN: 1872-7727</identifier><identifier>DOI: 10.1016/j.ejrad.2019.05.010</identifier><identifier>PMID: 31307650</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Artificial intelligence ; Carcinoma, Hepatocellular - diagnostic imaging ; Carcinoma, Hepatocellular - pathology ; Hepatocellular carcinoma ; Humans ; Liver Neoplasms - diagnostic imaging ; Liver Neoplasms - pathology ; Liver Transplantation ; Neoplasm Recurrence, Local - diagnostic imaging ; Neoplasm Recurrence, Local - pathology ; Predictive Value of Tests ; Radiographic Image Interpretation, Computer-Assisted ; Recurrence ; Tomography, X-Ray Computed</subject><ispartof>European journal of radiology, 2019-08, Vol.117, p.33-40</ispartof><rights>2019 The Author(s)</rights><rights>Copyright © 2019 The Author(s). Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-7f9d7072c832b6858c025634dc411518e3c0b8684af7b2f6a15554e8fe36e6d3</citedby><cites>FETCH-LOGICAL-c404t-7f9d7072c832b6858c025634dc411518e3c0b8684af7b2f6a15554e8fe36e6d3</cites><orcidid>0000-0003-0498-0432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31307650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Donghui</creatorcontrib><creatorcontrib>Gu, Dongsheng</creatorcontrib><creatorcontrib>Wang, Honghai</creatorcontrib><creatorcontrib>Wei, Jingwei</creatorcontrib><creatorcontrib>Wang, Zhenglu</creatorcontrib><creatorcontrib>Hao, Xiaohan</creatorcontrib><creatorcontrib>Ji, Qian</creatorcontrib><creatorcontrib>Cao, Shunqi</creatorcontrib><creatorcontrib>Song, Zhuolun</creatorcontrib><creatorcontrib>Jiang, Jiabing</creatorcontrib><creatorcontrib>Shen, Zhongyang</creatorcontrib><creatorcontrib>Tian, Jie</creatorcontrib><creatorcontrib>Zheng, Hong</creatorcontrib><title>Radiomics analysis enables recurrence prediction for hepatocellular carcinoma after liver transplantation</title><title>European journal of radiology</title><addtitle>Eur J Radiol</addtitle><description>To assess whether radiomics signature can identify aggressive behavior and predict recurrence of hepatocellular carcinoma (HCC) after liver transplantation. Our study consisted of a training dataset (n = 93) and a validation dataset (40) with clinically confirmed HCC after liver transplantation from October 2011 to December 2016. Radiomics features were extracted by delineating regions-of-interest (ROIs) around the lesion in four phases of CT images. A radiomics signature was generated using the least absolute shrinkage and selection operator (LASSO) Cox regression model. The association between radiomics signature and recurrence-free survival (RFS) was assessed. Preoperative clinical characteristics potentially associated with RFS were evaluated to develop a clinical model. A combined model incorporating clinical risk factors and radiomics signature was built. The stable radiomics features associated with the recurrence of HCC were simply found in arterial phase and portal phase. The prediction model based on the radiomics features extracted from the arterial phase showed better prediction performance than the portal vein phase or the fusion signature combining both of arterial and portal vein phase. A radiomics nomogram based on combined model consisting of the radiomics signature and clinical risk factors showed good predictive performance for RFS with a C-index of 0.785 (95% confidence interval [CI]: 0.674-0.895) in the training dataset and 0.789 (95% CI: 0.620-0.957) in the validation dataset. The calibration curves showed agreement in both training (p = 0.121) and validation cohorts (p = 0.164). Radiomics signature extracted from CT images may be a potential imaging biomarker for liver cancer invasion and enable accurate prediction of HCC recurrence after liver transplantation.</description><subject>Artificial intelligence</subject><subject>Carcinoma, Hepatocellular - diagnostic imaging</subject><subject>Carcinoma, Hepatocellular - pathology</subject><subject>Hepatocellular carcinoma</subject><subject>Humans</subject><subject>Liver Neoplasms - diagnostic imaging</subject><subject>Liver Neoplasms - pathology</subject><subject>Liver Transplantation</subject><subject>Neoplasm Recurrence, Local - diagnostic imaging</subject><subject>Neoplasm Recurrence, Local - pathology</subject><subject>Predictive Value of Tests</subject><subject>Radiographic Image Interpretation, Computer-Assisted</subject><subject>Recurrence</subject><subject>Tomography, X-Ray Computed</subject><issn>0720-048X</issn><issn>1872-7727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEFv1DAQhS0EokvbX4CEfOSSMHbs2HvggCpakCohoR64WRN7IrxK4mAnlfrvSdjCkcvM5b15bz7G3gqoBYj2w6mmU8ZQSxDHGnQNAl6wg7BGVsZI85IdwEioQNkfF-xNKScA0OooX7OLRjRgWg0HFr9jiGmMvnCccHgqsXCasBuo8Ex-zZkmT3zOFKJfYpp4nzL_STMuydMwrANm7jH7OKUROfYLZT7Ex20uGacyDzgtuBuv2Kseh0LXz_uSPdx-frj5Ut1_u_t68-m-8grUUpn-GMxW3NtGdq3V1oPUbaOCV0JoYanx0NnWKuxNJ_sWhdZake2paakNzSV7fz475_RrpbK4MZa9KU6U1uKk1NYoY5TdpM1Z6nMqJVPv5hxHzE9OgNsRu5P7g9jtiB1otyHeXO-eA9ZupPDP85fpJvh4FtD25WOk7IqPO8UQN6KLCyn-N-A3OhiP8Q</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Guo, Donghui</creator><creator>Gu, Dongsheng</creator><creator>Wang, Honghai</creator><creator>Wei, Jingwei</creator><creator>Wang, Zhenglu</creator><creator>Hao, Xiaohan</creator><creator>Ji, Qian</creator><creator>Cao, Shunqi</creator><creator>Song, Zhuolun</creator><creator>Jiang, Jiabing</creator><creator>Shen, Zhongyang</creator><creator>Tian, Jie</creator><creator>Zheng, Hong</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0498-0432</orcidid></search><sort><creationdate>201908</creationdate><title>Radiomics analysis enables recurrence prediction for hepatocellular carcinoma after liver transplantation</title><author>Guo, Donghui ; Gu, Dongsheng ; Wang, Honghai ; Wei, Jingwei ; Wang, Zhenglu ; Hao, Xiaohan ; Ji, Qian ; Cao, Shunqi ; Song, Zhuolun ; Jiang, Jiabing ; Shen, Zhongyang ; Tian, Jie ; Zheng, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-7f9d7072c832b6858c025634dc411518e3c0b8684af7b2f6a15554e8fe36e6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>Carcinoma, Hepatocellular - diagnostic imaging</topic><topic>Carcinoma, Hepatocellular - pathology</topic><topic>Hepatocellular carcinoma</topic><topic>Humans</topic><topic>Liver Neoplasms - diagnostic imaging</topic><topic>Liver Neoplasms - pathology</topic><topic>Liver Transplantation</topic><topic>Neoplasm Recurrence, Local - diagnostic imaging</topic><topic>Neoplasm Recurrence, Local - pathology</topic><topic>Predictive Value of Tests</topic><topic>Radiographic Image Interpretation, Computer-Assisted</topic><topic>Recurrence</topic><topic>Tomography, X-Ray Computed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Donghui</creatorcontrib><creatorcontrib>Gu, Dongsheng</creatorcontrib><creatorcontrib>Wang, Honghai</creatorcontrib><creatorcontrib>Wei, Jingwei</creatorcontrib><creatorcontrib>Wang, Zhenglu</creatorcontrib><creatorcontrib>Hao, Xiaohan</creatorcontrib><creatorcontrib>Ji, Qian</creatorcontrib><creatorcontrib>Cao, Shunqi</creatorcontrib><creatorcontrib>Song, Zhuolun</creatorcontrib><creatorcontrib>Jiang, Jiabing</creatorcontrib><creatorcontrib>Shen, Zhongyang</creatorcontrib><creatorcontrib>Tian, Jie</creatorcontrib><creatorcontrib>Zheng, Hong</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Donghui</au><au>Gu, Dongsheng</au><au>Wang, Honghai</au><au>Wei, Jingwei</au><au>Wang, Zhenglu</au><au>Hao, Xiaohan</au><au>Ji, Qian</au><au>Cao, Shunqi</au><au>Song, Zhuolun</au><au>Jiang, Jiabing</au><au>Shen, Zhongyang</au><au>Tian, Jie</au><au>Zheng, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiomics analysis enables recurrence prediction for hepatocellular carcinoma after liver transplantation</atitle><jtitle>European journal of radiology</jtitle><addtitle>Eur J Radiol</addtitle><date>2019-08</date><risdate>2019</risdate><volume>117</volume><spage>33</spage><epage>40</epage><pages>33-40</pages><issn>0720-048X</issn><eissn>1872-7727</eissn><abstract>To assess whether radiomics signature can identify aggressive behavior and predict recurrence of hepatocellular carcinoma (HCC) after liver transplantation. Our study consisted of a training dataset (n = 93) and a validation dataset (40) with clinically confirmed HCC after liver transplantation from October 2011 to December 2016. Radiomics features were extracted by delineating regions-of-interest (ROIs) around the lesion in four phases of CT images. A radiomics signature was generated using the least absolute shrinkage and selection operator (LASSO) Cox regression model. The association between radiomics signature and recurrence-free survival (RFS) was assessed. Preoperative clinical characteristics potentially associated with RFS were evaluated to develop a clinical model. A combined model incorporating clinical risk factors and radiomics signature was built. The stable radiomics features associated with the recurrence of HCC were simply found in arterial phase and portal phase. The prediction model based on the radiomics features extracted from the arterial phase showed better prediction performance than the portal vein phase or the fusion signature combining both of arterial and portal vein phase. A radiomics nomogram based on combined model consisting of the radiomics signature and clinical risk factors showed good predictive performance for RFS with a C-index of 0.785 (95% confidence interval [CI]: 0.674-0.895) in the training dataset and 0.789 (95% CI: 0.620-0.957) in the validation dataset. The calibration curves showed agreement in both training (p = 0.121) and validation cohorts (p = 0.164). Radiomics signature extracted from CT images may be a potential imaging biomarker for liver cancer invasion and enable accurate prediction of HCC recurrence after liver transplantation.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>31307650</pmid><doi>10.1016/j.ejrad.2019.05.010</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0498-0432</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0720-048X
ispartof European journal of radiology, 2019-08, Vol.117, p.33-40
issn 0720-048X
1872-7727
language eng
recordid cdi_proquest_miscellaneous_2258747748
source Elsevier
subjects Artificial intelligence
Carcinoma, Hepatocellular - diagnostic imaging
Carcinoma, Hepatocellular - pathology
Hepatocellular carcinoma
Humans
Liver Neoplasms - diagnostic imaging
Liver Neoplasms - pathology
Liver Transplantation
Neoplasm Recurrence, Local - diagnostic imaging
Neoplasm Recurrence, Local - pathology
Predictive Value of Tests
Radiographic Image Interpretation, Computer-Assisted
Recurrence
Tomography, X-Ray Computed
title Radiomics analysis enables recurrence prediction for hepatocellular carcinoma after liver transplantation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A27%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiomics%20analysis%20enables%20recurrence%20prediction%20for%20hepatocellular%20carcinoma%20after%20liver%20transplantation&rft.jtitle=European%20journal%20of%20radiology&rft.au=Guo,%20Donghui&rft.date=2019-08&rft.volume=117&rft.spage=33&rft.epage=40&rft.pages=33-40&rft.issn=0720-048X&rft.eissn=1872-7727&rft_id=info:doi/10.1016/j.ejrad.2019.05.010&rft_dat=%3Cproquest_cross%3E2258747748%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-7f9d7072c832b6858c025634dc411518e3c0b8684af7b2f6a15554e8fe36e6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2258747748&rft_id=info:pmid/31307650&rfr_iscdi=true