Loading…
Bayesian Inference For Predicting Ecological Water Quality Under Different Climate Change Scenarios
The aim of this paper is to assess the separate and interactive effects of eutrophication and climate variables on the sea water quality in Pärnu Bay (the Gulf of Riga, Baltic Sea) using multivariate statistical analyses and the Bayesian Belief Network (BBN) methodology. The assessment was based on...
Saved in:
Published in: | WIT Transactions on Ecology and the Environment 2009, Vol.127, p.173 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c263t-449c85f23c8a3d456cb2f5fd76aa628002e1448967d375390ac0812df19b21e93 |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | 173 |
container_title | WIT Transactions on Ecology and the Environment |
container_volume | 127 |
creator | Kotta, J Aps, R Orav-Kotta, H |
description | The aim of this paper is to assess the separate and interactive effects of eutrophication and climate variables on the sea water quality in Pärnu Bay (the Gulf of Riga, Baltic Sea) using multivariate statistical analyses and the Bayesian Belief Network (BBN) methodology. The assessment was based on the following biological quality elements: phytoplankton, submerged aquatic vegetation and benthic invertebrates. The multivariate statistical analyses suggest that zoobenthos communities are largely driven by weather conditions (i.e. climate variables), phytoplankton by nutrient loads while the dynamics of macrophyte communities was due to the combined effect of weather and nutrient loads. The BBN constructed for this study represents uncertainty in ecological water quality assessment. Probabilistic modeling shows that phytoplankton and zoobenthos are not sensitive to climate change impacts while phytobenthos would suffer from decrease in sea water salinity. Under climate change, therefore, phytobenthos is one of the key variables in determining the water quality in the study area. |
doi_str_mv | 10.2495/RAV090151 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2259345836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259345836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-449c85f23c8a3d456cb2f5fd76aa628002e1448967d375390ac0812df19b21e93</originalsourceid><addsrcrecordid>eNotT81OwzAYixBITGMH3iBHLoUkX5I2x1E2mDSJ3wG3KUu_jEhZCk132NtTDU62JduyCbnk7FpIo25epu_MMK74CRnxUkIBSvLTI9eFlNXnOZnkHDZMKuAKBBsRd2sPmINNdJE8dpgc0nnb0acOm-D6kLZ05trYboOzkX7YHjv6vLcx9Ae6Ss2g7oI_Bntax7AbDLT-smmL9NVhsl1o8wU58zZmnPzjmKzms7f6oVg-3i_q6bJwQkM_DDSuUl6Aqyw0Umm3EV75ptTWalExJpAPJ4wuGygVGGYdq7hoPDcbwdHAmFz99X537c8ec7_ehewwRpuw3ee1EMqAVBVo-AW17Viv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259345836</pqid></control><display><type>article</type><title>Bayesian Inference For Predicting Ecological Water Quality Under Different Climate Change Scenarios</title><source>Publicly Available Content Database</source><creator>Kotta, J ; Aps, R ; Orav-Kotta, H</creator><creatorcontrib>Kotta, J ; Aps, R ; Orav-Kotta, H</creatorcontrib><description>The aim of this paper is to assess the separate and interactive effects of eutrophication and climate variables on the sea water quality in Pärnu Bay (the Gulf of Riga, Baltic Sea) using multivariate statistical analyses and the Bayesian Belief Network (BBN) methodology. The assessment was based on the following biological quality elements: phytoplankton, submerged aquatic vegetation and benthic invertebrates. The multivariate statistical analyses suggest that zoobenthos communities are largely driven by weather conditions (i.e. climate variables), phytoplankton by nutrient loads while the dynamics of macrophyte communities was due to the combined effect of weather and nutrient loads. The BBN constructed for this study represents uncertainty in ecological water quality assessment. Probabilistic modeling shows that phytoplankton and zoobenthos are not sensitive to climate change impacts while phytobenthos would suffer from decrease in sea water salinity. Under climate change, therefore, phytobenthos is one of the key variables in determining the water quality in the study area.</description><identifier>ISSN: 1746-448X</identifier><identifier>EISSN: 1743-3541</identifier><identifier>DOI: 10.2495/RAV090151</identifier><language>eng</language><publisher>Southampton: W I T Press</publisher><subject>Aquatic plants ; Bayesian analysis ; Belief networks ; Chemical analysis ; Climate change ; Climate effects ; Climate models ; Communities ; Ecological monitoring ; Environmental impact ; Eutrophication ; Invertebrates ; Multivariate analysis ; Nutrient dynamics ; Nutrient loading ; Nutrients ; Phytobenthos ; Phytoplankton ; Plankton ; Quality assessment ; Quality control ; Seawater ; Statistical analysis ; Statistical inference ; Statistics ; Water analysis ; Water quality ; Water quality assessments ; Water salinity ; Weather ; Zoobenthos</subject><ispartof>WIT Transactions on Ecology and the Environment, 2009, Vol.127, p.173</ispartof><rights>2009. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.witpress.com/elibrary .</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-449c85f23c8a3d456cb2f5fd76aa628002e1448967d375390ac0812df19b21e93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2259345836?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25754,27923,27924,27925,37013,44590</link.rule.ids></links><search><creatorcontrib>Kotta, J</creatorcontrib><creatorcontrib>Aps, R</creatorcontrib><creatorcontrib>Orav-Kotta, H</creatorcontrib><title>Bayesian Inference For Predicting Ecological Water Quality Under Different Climate Change Scenarios</title><title>WIT Transactions on Ecology and the Environment</title><description>The aim of this paper is to assess the separate and interactive effects of eutrophication and climate variables on the sea water quality in Pärnu Bay (the Gulf of Riga, Baltic Sea) using multivariate statistical analyses and the Bayesian Belief Network (BBN) methodology. The assessment was based on the following biological quality elements: phytoplankton, submerged aquatic vegetation and benthic invertebrates. The multivariate statistical analyses suggest that zoobenthos communities are largely driven by weather conditions (i.e. climate variables), phytoplankton by nutrient loads while the dynamics of macrophyte communities was due to the combined effect of weather and nutrient loads. The BBN constructed for this study represents uncertainty in ecological water quality assessment. Probabilistic modeling shows that phytoplankton and zoobenthos are not sensitive to climate change impacts while phytobenthos would suffer from decrease in sea water salinity. Under climate change, therefore, phytobenthos is one of the key variables in determining the water quality in the study area.</description><subject>Aquatic plants</subject><subject>Bayesian analysis</subject><subject>Belief networks</subject><subject>Chemical analysis</subject><subject>Climate change</subject><subject>Climate effects</subject><subject>Climate models</subject><subject>Communities</subject><subject>Ecological monitoring</subject><subject>Environmental impact</subject><subject>Eutrophication</subject><subject>Invertebrates</subject><subject>Multivariate analysis</subject><subject>Nutrient dynamics</subject><subject>Nutrient loading</subject><subject>Nutrients</subject><subject>Phytobenthos</subject><subject>Phytoplankton</subject><subject>Plankton</subject><subject>Quality assessment</subject><subject>Quality control</subject><subject>Seawater</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Statistics</subject><subject>Water analysis</subject><subject>Water quality</subject><subject>Water quality assessments</subject><subject>Water salinity</subject><subject>Weather</subject><subject>Zoobenthos</subject><issn>1746-448X</issn><issn>1743-3541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotT81OwzAYixBITGMH3iBHLoUkX5I2x1E2mDSJ3wG3KUu_jEhZCk132NtTDU62JduyCbnk7FpIo25epu_MMK74CRnxUkIBSvLTI9eFlNXnOZnkHDZMKuAKBBsRd2sPmINNdJE8dpgc0nnb0acOm-D6kLZ05trYboOzkX7YHjv6vLcx9Ae6Ss2g7oI_Bntax7AbDLT-smmL9NVhsl1o8wU58zZmnPzjmKzms7f6oVg-3i_q6bJwQkM_DDSuUl6Aqyw0Umm3EV75ptTWalExJpAPJ4wuGygVGGYdq7hoPDcbwdHAmFz99X537c8ec7_ehewwRpuw3ee1EMqAVBVo-AW17Viv</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Kotta, J</creator><creator>Aps, R</creator><creator>Orav-Kotta, H</creator><general>W I T Press</general><scope>7SN</scope><scope>7ST</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope></search><sort><creationdate>2009</creationdate><title>Bayesian Inference For Predicting Ecological Water Quality Under Different Climate Change Scenarios</title><author>Kotta, J ; Aps, R ; Orav-Kotta, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-449c85f23c8a3d456cb2f5fd76aa628002e1448967d375390ac0812df19b21e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aquatic plants</topic><topic>Bayesian analysis</topic><topic>Belief networks</topic><topic>Chemical analysis</topic><topic>Climate change</topic><topic>Climate effects</topic><topic>Climate models</topic><topic>Communities</topic><topic>Ecological monitoring</topic><topic>Environmental impact</topic><topic>Eutrophication</topic><topic>Invertebrates</topic><topic>Multivariate analysis</topic><topic>Nutrient dynamics</topic><topic>Nutrient loading</topic><topic>Nutrients</topic><topic>Phytobenthos</topic><topic>Phytoplankton</topic><topic>Plankton</topic><topic>Quality assessment</topic><topic>Quality control</topic><topic>Seawater</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Statistics</topic><topic>Water analysis</topic><topic>Water quality</topic><topic>Water quality assessments</topic><topic>Water salinity</topic><topic>Weather</topic><topic>Zoobenthos</topic><toplevel>online_resources</toplevel><creatorcontrib>Kotta, J</creatorcontrib><creatorcontrib>Aps, R</creatorcontrib><creatorcontrib>Orav-Kotta, H</creatorcontrib><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><jtitle>WIT Transactions on Ecology and the Environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kotta, J</au><au>Aps, R</au><au>Orav-Kotta, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Inference For Predicting Ecological Water Quality Under Different Climate Change Scenarios</atitle><jtitle>WIT Transactions on Ecology and the Environment</jtitle><date>2009</date><risdate>2009</risdate><volume>127</volume><spage>173</spage><pages>173-</pages><issn>1746-448X</issn><eissn>1743-3541</eissn><abstract>The aim of this paper is to assess the separate and interactive effects of eutrophication and climate variables on the sea water quality in Pärnu Bay (the Gulf of Riga, Baltic Sea) using multivariate statistical analyses and the Bayesian Belief Network (BBN) methodology. The assessment was based on the following biological quality elements: phytoplankton, submerged aquatic vegetation and benthic invertebrates. The multivariate statistical analyses suggest that zoobenthos communities are largely driven by weather conditions (i.e. climate variables), phytoplankton by nutrient loads while the dynamics of macrophyte communities was due to the combined effect of weather and nutrient loads. The BBN constructed for this study represents uncertainty in ecological water quality assessment. Probabilistic modeling shows that phytoplankton and zoobenthos are not sensitive to climate change impacts while phytobenthos would suffer from decrease in sea water salinity. Under climate change, therefore, phytobenthos is one of the key variables in determining the water quality in the study area.</abstract><cop>Southampton</cop><pub>W I T Press</pub><doi>10.2495/RAV090151</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1746-448X |
ispartof | WIT Transactions on Ecology and the Environment, 2009, Vol.127, p.173 |
issn | 1746-448X 1743-3541 |
language | eng |
recordid | cdi_proquest_miscellaneous_2259345836 |
source | Publicly Available Content Database |
subjects | Aquatic plants Bayesian analysis Belief networks Chemical analysis Climate change Climate effects Climate models Communities Ecological monitoring Environmental impact Eutrophication Invertebrates Multivariate analysis Nutrient dynamics Nutrient loading Nutrients Phytobenthos Phytoplankton Plankton Quality assessment Quality control Seawater Statistical analysis Statistical inference Statistics Water analysis Water quality Water quality assessments Water salinity Weather Zoobenthos |
title | Bayesian Inference For Predicting Ecological Water Quality Under Different Climate Change Scenarios |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Inference%20For%20Predicting%20Ecological%20Water%20Quality%20Under%20Different%20Climate%20Change%20Scenarios&rft.jtitle=WIT%20Transactions%20on%20Ecology%20and%20the%20Environment&rft.au=Kotta,%20J&rft.date=2009&rft.volume=127&rft.spage=173&rft.pages=173-&rft.issn=1746-448X&rft.eissn=1743-3541&rft_id=info:doi/10.2495/RAV090151&rft_dat=%3Cproquest%3E2259345836%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-449c85f23c8a3d456cb2f5fd76aa628002e1448967d375390ac0812df19b21e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259345836&rft_id=info:pmid/&rfr_iscdi=true |