Loading…

Bayesian Inference For Predicting Ecological Water Quality Under Different Climate Change Scenarios

The aim of this paper is to assess the separate and interactive effects of eutrophication and climate variables on the sea water quality in Pärnu Bay (the Gulf of Riga, Baltic Sea) using multivariate statistical analyses and the Bayesian Belief Network (BBN) methodology. The assessment was based on...

Full description

Saved in:
Bibliographic Details
Published in:WIT Transactions on Ecology and the Environment 2009, Vol.127, p.173
Main Authors: Kotta, J, Aps, R, Orav-Kotta, H
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c263t-449c85f23c8a3d456cb2f5fd76aa628002e1448967d375390ac0812df19b21e93
cites
container_end_page
container_issue
container_start_page 173
container_title WIT Transactions on Ecology and the Environment
container_volume 127
creator Kotta, J
Aps, R
Orav-Kotta, H
description The aim of this paper is to assess the separate and interactive effects of eutrophication and climate variables on the sea water quality in Pärnu Bay (the Gulf of Riga, Baltic Sea) using multivariate statistical analyses and the Bayesian Belief Network (BBN) methodology. The assessment was based on the following biological quality elements: phytoplankton, submerged aquatic vegetation and benthic invertebrates. The multivariate statistical analyses suggest that zoobenthos communities are largely driven by weather conditions (i.e. climate variables), phytoplankton by nutrient loads while the dynamics of macrophyte communities was due to the combined effect of weather and nutrient loads. The BBN constructed for this study represents uncertainty in ecological water quality assessment. Probabilistic modeling shows that phytoplankton and zoobenthos are not sensitive to climate change impacts while phytobenthos would suffer from decrease in sea water salinity. Under climate change, therefore, phytobenthos is one of the key variables in determining the water quality in the study area.
doi_str_mv 10.2495/RAV090151
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2259345836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259345836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-449c85f23c8a3d456cb2f5fd76aa628002e1448967d375390ac0812df19b21e93</originalsourceid><addsrcrecordid>eNotT81OwzAYixBITGMH3iBHLoUkX5I2x1E2mDSJ3wG3KUu_jEhZCk132NtTDU62JduyCbnk7FpIo25epu_MMK74CRnxUkIBSvLTI9eFlNXnOZnkHDZMKuAKBBsRd2sPmINNdJE8dpgc0nnb0acOm-D6kLZ05trYboOzkX7YHjv6vLcx9Ae6Ss2g7oI_Bntax7AbDLT-smmL9NVhsl1o8wU58zZmnPzjmKzms7f6oVg-3i_q6bJwQkM_DDSuUl6Aqyw0Umm3EV75ptTWalExJpAPJ4wuGygVGGYdq7hoPDcbwdHAmFz99X537c8ec7_ehewwRpuw3ee1EMqAVBVo-AW17Viv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259345836</pqid></control><display><type>article</type><title>Bayesian Inference For Predicting Ecological Water Quality Under Different Climate Change Scenarios</title><source>Publicly Available Content Database</source><creator>Kotta, J ; Aps, R ; Orav-Kotta, H</creator><creatorcontrib>Kotta, J ; Aps, R ; Orav-Kotta, H</creatorcontrib><description>The aim of this paper is to assess the separate and interactive effects of eutrophication and climate variables on the sea water quality in Pärnu Bay (the Gulf of Riga, Baltic Sea) using multivariate statistical analyses and the Bayesian Belief Network (BBN) methodology. The assessment was based on the following biological quality elements: phytoplankton, submerged aquatic vegetation and benthic invertebrates. The multivariate statistical analyses suggest that zoobenthos communities are largely driven by weather conditions (i.e. climate variables), phytoplankton by nutrient loads while the dynamics of macrophyte communities was due to the combined effect of weather and nutrient loads. The BBN constructed for this study represents uncertainty in ecological water quality assessment. Probabilistic modeling shows that phytoplankton and zoobenthos are not sensitive to climate change impacts while phytobenthos would suffer from decrease in sea water salinity. Under climate change, therefore, phytobenthos is one of the key variables in determining the water quality in the study area.</description><identifier>ISSN: 1746-448X</identifier><identifier>EISSN: 1743-3541</identifier><identifier>DOI: 10.2495/RAV090151</identifier><language>eng</language><publisher>Southampton: W I T Press</publisher><subject>Aquatic plants ; Bayesian analysis ; Belief networks ; Chemical analysis ; Climate change ; Climate effects ; Climate models ; Communities ; Ecological monitoring ; Environmental impact ; Eutrophication ; Invertebrates ; Multivariate analysis ; Nutrient dynamics ; Nutrient loading ; Nutrients ; Phytobenthos ; Phytoplankton ; Plankton ; Quality assessment ; Quality control ; Seawater ; Statistical analysis ; Statistical inference ; Statistics ; Water analysis ; Water quality ; Water quality assessments ; Water salinity ; Weather ; Zoobenthos</subject><ispartof>WIT Transactions on Ecology and the Environment, 2009, Vol.127, p.173</ispartof><rights>2009. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.witpress.com/elibrary .</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-449c85f23c8a3d456cb2f5fd76aa628002e1448967d375390ac0812df19b21e93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2259345836?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25754,27923,27924,27925,37013,44590</link.rule.ids></links><search><creatorcontrib>Kotta, J</creatorcontrib><creatorcontrib>Aps, R</creatorcontrib><creatorcontrib>Orav-Kotta, H</creatorcontrib><title>Bayesian Inference For Predicting Ecological Water Quality Under Different Climate Change Scenarios</title><title>WIT Transactions on Ecology and the Environment</title><description>The aim of this paper is to assess the separate and interactive effects of eutrophication and climate variables on the sea water quality in Pärnu Bay (the Gulf of Riga, Baltic Sea) using multivariate statistical analyses and the Bayesian Belief Network (BBN) methodology. The assessment was based on the following biological quality elements: phytoplankton, submerged aquatic vegetation and benthic invertebrates. The multivariate statistical analyses suggest that zoobenthos communities are largely driven by weather conditions (i.e. climate variables), phytoplankton by nutrient loads while the dynamics of macrophyte communities was due to the combined effect of weather and nutrient loads. The BBN constructed for this study represents uncertainty in ecological water quality assessment. Probabilistic modeling shows that phytoplankton and zoobenthos are not sensitive to climate change impacts while phytobenthos would suffer from decrease in sea water salinity. Under climate change, therefore, phytobenthos is one of the key variables in determining the water quality in the study area.</description><subject>Aquatic plants</subject><subject>Bayesian analysis</subject><subject>Belief networks</subject><subject>Chemical analysis</subject><subject>Climate change</subject><subject>Climate effects</subject><subject>Climate models</subject><subject>Communities</subject><subject>Ecological monitoring</subject><subject>Environmental impact</subject><subject>Eutrophication</subject><subject>Invertebrates</subject><subject>Multivariate analysis</subject><subject>Nutrient dynamics</subject><subject>Nutrient loading</subject><subject>Nutrients</subject><subject>Phytobenthos</subject><subject>Phytoplankton</subject><subject>Plankton</subject><subject>Quality assessment</subject><subject>Quality control</subject><subject>Seawater</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Statistics</subject><subject>Water analysis</subject><subject>Water quality</subject><subject>Water quality assessments</subject><subject>Water salinity</subject><subject>Weather</subject><subject>Zoobenthos</subject><issn>1746-448X</issn><issn>1743-3541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotT81OwzAYixBITGMH3iBHLoUkX5I2x1E2mDSJ3wG3KUu_jEhZCk132NtTDU62JduyCbnk7FpIo25epu_MMK74CRnxUkIBSvLTI9eFlNXnOZnkHDZMKuAKBBsRd2sPmINNdJE8dpgc0nnb0acOm-D6kLZ05trYboOzkX7YHjv6vLcx9Ae6Ss2g7oI_Bntax7AbDLT-smmL9NVhsl1o8wU58zZmnPzjmKzms7f6oVg-3i_q6bJwQkM_DDSuUl6Aqyw0Umm3EV75ptTWalExJpAPJ4wuGygVGGYdq7hoPDcbwdHAmFz99X537c8ec7_ehewwRpuw3ee1EMqAVBVo-AW17Viv</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Kotta, J</creator><creator>Aps, R</creator><creator>Orav-Kotta, H</creator><general>W I T Press</general><scope>7SN</scope><scope>7ST</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope></search><sort><creationdate>2009</creationdate><title>Bayesian Inference For Predicting Ecological Water Quality Under Different Climate Change Scenarios</title><author>Kotta, J ; Aps, R ; Orav-Kotta, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-449c85f23c8a3d456cb2f5fd76aa628002e1448967d375390ac0812df19b21e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aquatic plants</topic><topic>Bayesian analysis</topic><topic>Belief networks</topic><topic>Chemical analysis</topic><topic>Climate change</topic><topic>Climate effects</topic><topic>Climate models</topic><topic>Communities</topic><topic>Ecological monitoring</topic><topic>Environmental impact</topic><topic>Eutrophication</topic><topic>Invertebrates</topic><topic>Multivariate analysis</topic><topic>Nutrient dynamics</topic><topic>Nutrient loading</topic><topic>Nutrients</topic><topic>Phytobenthos</topic><topic>Phytoplankton</topic><topic>Plankton</topic><topic>Quality assessment</topic><topic>Quality control</topic><topic>Seawater</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Statistics</topic><topic>Water analysis</topic><topic>Water quality</topic><topic>Water quality assessments</topic><topic>Water salinity</topic><topic>Weather</topic><topic>Zoobenthos</topic><toplevel>online_resources</toplevel><creatorcontrib>Kotta, J</creatorcontrib><creatorcontrib>Aps, R</creatorcontrib><creatorcontrib>Orav-Kotta, H</creatorcontrib><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><jtitle>WIT Transactions on Ecology and the Environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kotta, J</au><au>Aps, R</au><au>Orav-Kotta, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Inference For Predicting Ecological Water Quality Under Different Climate Change Scenarios</atitle><jtitle>WIT Transactions on Ecology and the Environment</jtitle><date>2009</date><risdate>2009</risdate><volume>127</volume><spage>173</spage><pages>173-</pages><issn>1746-448X</issn><eissn>1743-3541</eissn><abstract>The aim of this paper is to assess the separate and interactive effects of eutrophication and climate variables on the sea water quality in Pärnu Bay (the Gulf of Riga, Baltic Sea) using multivariate statistical analyses and the Bayesian Belief Network (BBN) methodology. The assessment was based on the following biological quality elements: phytoplankton, submerged aquatic vegetation and benthic invertebrates. The multivariate statistical analyses suggest that zoobenthos communities are largely driven by weather conditions (i.e. climate variables), phytoplankton by nutrient loads while the dynamics of macrophyte communities was due to the combined effect of weather and nutrient loads. The BBN constructed for this study represents uncertainty in ecological water quality assessment. Probabilistic modeling shows that phytoplankton and zoobenthos are not sensitive to climate change impacts while phytobenthos would suffer from decrease in sea water salinity. Under climate change, therefore, phytobenthos is one of the key variables in determining the water quality in the study area.</abstract><cop>Southampton</cop><pub>W I T Press</pub><doi>10.2495/RAV090151</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1746-448X
ispartof WIT Transactions on Ecology and the Environment, 2009, Vol.127, p.173
issn 1746-448X
1743-3541
language eng
recordid cdi_proquest_miscellaneous_2259345836
source Publicly Available Content Database
subjects Aquatic plants
Bayesian analysis
Belief networks
Chemical analysis
Climate change
Climate effects
Climate models
Communities
Ecological monitoring
Environmental impact
Eutrophication
Invertebrates
Multivariate analysis
Nutrient dynamics
Nutrient loading
Nutrients
Phytobenthos
Phytoplankton
Plankton
Quality assessment
Quality control
Seawater
Statistical analysis
Statistical inference
Statistics
Water analysis
Water quality
Water quality assessments
Water salinity
Weather
Zoobenthos
title Bayesian Inference For Predicting Ecological Water Quality Under Different Climate Change Scenarios
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Inference%20For%20Predicting%20Ecological%20Water%20Quality%20Under%20Different%20Climate%20Change%20Scenarios&rft.jtitle=WIT%20Transactions%20on%20Ecology%20and%20the%20Environment&rft.au=Kotta,%20J&rft.date=2009&rft.volume=127&rft.spage=173&rft.pages=173-&rft.issn=1746-448X&rft.eissn=1743-3541&rft_id=info:doi/10.2495/RAV090151&rft_dat=%3Cproquest%3E2259345836%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-449c85f23c8a3d456cb2f5fd76aa628002e1448967d375390ac0812df19b21e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259345836&rft_id=info:pmid/&rfr_iscdi=true