Loading…

An Algorithm for Building Multi-State Classifiers Based on Collision-Induced Unfolding Data

Collision-induced unfolding (CIU) has emerged as a valuable method for distinguishing iso-cross-sectional protein ions through their distinct gas-phase unfolding trajectories. CIU shows promise as a high-throughput, structure-sensitive screening technique with potential applications in drug discover...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2019-08, Vol.91 (16), p.10407-10412
Main Authors: Polasky, Daniel A, Dixit, Sugyan M, Vallejo, Daniel D, Kulju, Kathryn D, Ruotolo, Brandon T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a376t-1a32eac1a69f82c0ddcedfb72d49a9d22b04c8fff54d5119a0ceaa7b3f1c3a0d3
cites cdi_FETCH-LOGICAL-a376t-1a32eac1a69f82c0ddcedfb72d49a9d22b04c8fff54d5119a0ceaa7b3f1c3a0d3
container_end_page 10412
container_issue 16
container_start_page 10407
container_title Analytical chemistry (Washington)
container_volume 91
creator Polasky, Daniel A
Dixit, Sugyan M
Vallejo, Daniel D
Kulju, Kathryn D
Ruotolo, Brandon T
description Collision-induced unfolding (CIU) has emerged as a valuable method for distinguishing iso-cross-sectional protein ions through their distinct gas-phase unfolding trajectories. CIU shows promise as a high-throughput, structure-sensitive screening technique with potential applications in drug discovery and biotherapeutic characterization. We recently developed a CIU classification workflow to support screening applications that utilized CIU data acquired from a single protein charge state to distinguish immunoglobulin (IgG) subtypes and membrane protein lipid binding. However, distinguishing highly similar protein structures, such as those associated with biotherapeutics, can be challenging. Here, we present an expansion of this classification method that includes CIU data from multiple charge states, or indeed any perturbation to protein structure that differentially affects CIU, into a combined classifier. Using this improved method, we are able to improve the accuracy of existing, single-state classifiers for IgG subtypes and develop an activation-state-sensitive classifier for selected Src kinase inhibitors when data from a single charge state was insufficient to do so. Finally, we employ the combination of multiple charge states and stress conditions to distinguish a highly similar innovator/biosimilar biotherapeutic pair, demonstrating the potential of CIU as a rapid screening tool for drug discovery and biotherapeutic analysis.
doi_str_mv 10.1021/acs.analchem.9b02650
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2259368877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2279821554</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-1a32eac1a69f82c0ddcedfb72d49a9d22b04c8fff54d5119a0ceaa7b3f1c3a0d3</originalsourceid><addsrcrecordid>eNp9kDtP5DAURi3ECmYH_gFCkWhoMnttx3mUw8ACEqstYCqK6MYPMHJisJOCf78ezTAFxVaWrs75LB1CzigsKDD6C2Vc4IBOvup-0XTASgEHZEYFg7ysa3ZIZgDAc1YBHJOfMb4BUAq0PCLHnHIKAsSMPC-HbOlefLDja58ZH7KryTplh5fsz-RGmz-OOOps5TBGa6wOMbvCqFXmh2zlnbPR-iG_H9Qk03E9GL-Vr3HEE_LDoIv6dPfOyfr3zdPqLn_4e3u_Wj7kyKtyzClyplFSLBtTMwlKpSnTVUwVDTaKsQ4KWRtjRKEEpQ2C1IhVxw2VHEHxObnc7r4H_zHpOLa9jVI7h4P2U2wZEw1PSaoqoRff0Dc_hVRxQ1VNzagQRaKKLSWDjzFo074H22P4bCm0m_htit9-xW938ZN2vhuful6rvfRVOwGwBTb6_uP_bv4DRRCT_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2279821554</pqid></control><display><type>article</type><title>An Algorithm for Building Multi-State Classifiers Based on Collision-Induced Unfolding Data</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Polasky, Daniel A ; Dixit, Sugyan M ; Vallejo, Daniel D ; Kulju, Kathryn D ; Ruotolo, Brandon T</creator><creatorcontrib>Polasky, Daniel A ; Dixit, Sugyan M ; Vallejo, Daniel D ; Kulju, Kathryn D ; Ruotolo, Brandon T</creatorcontrib><description>Collision-induced unfolding (CIU) has emerged as a valuable method for distinguishing iso-cross-sectional protein ions through their distinct gas-phase unfolding trajectories. CIU shows promise as a high-throughput, structure-sensitive screening technique with potential applications in drug discovery and biotherapeutic characterization. We recently developed a CIU classification workflow to support screening applications that utilized CIU data acquired from a single protein charge state to distinguish immunoglobulin (IgG) subtypes and membrane protein lipid binding. However, distinguishing highly similar protein structures, such as those associated with biotherapeutics, can be challenging. Here, we present an expansion of this classification method that includes CIU data from multiple charge states, or indeed any perturbation to protein structure that differentially affects CIU, into a combined classifier. Using this improved method, we are able to improve the accuracy of existing, single-state classifiers for IgG subtypes and develop an activation-state-sensitive classifier for selected Src kinase inhibitors when data from a single charge state was insufficient to do so. Finally, we employ the combination of multiple charge states and stress conditions to distinguish a highly similar innovator/biosimilar biotherapeutic pair, demonstrating the potential of CIU as a rapid screening tool for drug discovery and biotherapeutic analysis.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.9b02650</identifier><identifier>PMID: 31310505</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Chemistry ; Classification ; Classifiers ; Data acquisition ; Drug discovery ; Immunoglobulin G ; Ions ; Kinases ; Lipids ; Membrane proteins ; Perturbation ; Protein structure ; Proteins ; Workflow</subject><ispartof>Analytical chemistry (Washington), 2019-08, Vol.91 (16), p.10407-10412</ispartof><rights>Copyright American Chemical Society Aug 20, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-1a32eac1a69f82c0ddcedfb72d49a9d22b04c8fff54d5119a0ceaa7b3f1c3a0d3</citedby><cites>FETCH-LOGICAL-a376t-1a32eac1a69f82c0ddcedfb72d49a9d22b04c8fff54d5119a0ceaa7b3f1c3a0d3</cites><orcidid>0000-0002-6084-2328 ; 0000-0002-0515-1735</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31310505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Polasky, Daniel A</creatorcontrib><creatorcontrib>Dixit, Sugyan M</creatorcontrib><creatorcontrib>Vallejo, Daniel D</creatorcontrib><creatorcontrib>Kulju, Kathryn D</creatorcontrib><creatorcontrib>Ruotolo, Brandon T</creatorcontrib><title>An Algorithm for Building Multi-State Classifiers Based on Collision-Induced Unfolding Data</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Collision-induced unfolding (CIU) has emerged as a valuable method for distinguishing iso-cross-sectional protein ions through their distinct gas-phase unfolding trajectories. CIU shows promise as a high-throughput, structure-sensitive screening technique with potential applications in drug discovery and biotherapeutic characterization. We recently developed a CIU classification workflow to support screening applications that utilized CIU data acquired from a single protein charge state to distinguish immunoglobulin (IgG) subtypes and membrane protein lipid binding. However, distinguishing highly similar protein structures, such as those associated with biotherapeutics, can be challenging. Here, we present an expansion of this classification method that includes CIU data from multiple charge states, or indeed any perturbation to protein structure that differentially affects CIU, into a combined classifier. Using this improved method, we are able to improve the accuracy of existing, single-state classifiers for IgG subtypes and develop an activation-state-sensitive classifier for selected Src kinase inhibitors when data from a single charge state was insufficient to do so. Finally, we employ the combination of multiple charge states and stress conditions to distinguish a highly similar innovator/biosimilar biotherapeutic pair, demonstrating the potential of CIU as a rapid screening tool for drug discovery and biotherapeutic analysis.</description><subject>Algorithms</subject><subject>Chemistry</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Data acquisition</subject><subject>Drug discovery</subject><subject>Immunoglobulin G</subject><subject>Ions</subject><subject>Kinases</subject><subject>Lipids</subject><subject>Membrane proteins</subject><subject>Perturbation</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Workflow</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kDtP5DAURi3ECmYH_gFCkWhoMnttx3mUw8ACEqstYCqK6MYPMHJisJOCf78ezTAFxVaWrs75LB1CzigsKDD6C2Vc4IBOvup-0XTASgEHZEYFg7ysa3ZIZgDAc1YBHJOfMb4BUAq0PCLHnHIKAsSMPC-HbOlefLDja58ZH7KryTplh5fsz-RGmz-OOOps5TBGa6wOMbvCqFXmh2zlnbPR-iG_H9Qk03E9GL-Vr3HEE_LDoIv6dPfOyfr3zdPqLn_4e3u_Wj7kyKtyzClyplFSLBtTMwlKpSnTVUwVDTaKsQ4KWRtjRKEEpQ2C1IhVxw2VHEHxObnc7r4H_zHpOLa9jVI7h4P2U2wZEw1PSaoqoRff0Dc_hVRxQ1VNzagQRaKKLSWDjzFo074H22P4bCm0m_htit9-xW938ZN2vhuful6rvfRVOwGwBTb6_uP_bv4DRRCT_w</recordid><startdate>20190820</startdate><enddate>20190820</enddate><creator>Polasky, Daniel A</creator><creator>Dixit, Sugyan M</creator><creator>Vallejo, Daniel D</creator><creator>Kulju, Kathryn D</creator><creator>Ruotolo, Brandon T</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6084-2328</orcidid><orcidid>https://orcid.org/0000-0002-0515-1735</orcidid></search><sort><creationdate>20190820</creationdate><title>An Algorithm for Building Multi-State Classifiers Based on Collision-Induced Unfolding Data</title><author>Polasky, Daniel A ; Dixit, Sugyan M ; Vallejo, Daniel D ; Kulju, Kathryn D ; Ruotolo, Brandon T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-1a32eac1a69f82c0ddcedfb72d49a9d22b04c8fff54d5119a0ceaa7b3f1c3a0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Chemistry</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Data acquisition</topic><topic>Drug discovery</topic><topic>Immunoglobulin G</topic><topic>Ions</topic><topic>Kinases</topic><topic>Lipids</topic><topic>Membrane proteins</topic><topic>Perturbation</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polasky, Daniel A</creatorcontrib><creatorcontrib>Dixit, Sugyan M</creatorcontrib><creatorcontrib>Vallejo, Daniel D</creatorcontrib><creatorcontrib>Kulju, Kathryn D</creatorcontrib><creatorcontrib>Ruotolo, Brandon T</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polasky, Daniel A</au><au>Dixit, Sugyan M</au><au>Vallejo, Daniel D</au><au>Kulju, Kathryn D</au><au>Ruotolo, Brandon T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Algorithm for Building Multi-State Classifiers Based on Collision-Induced Unfolding Data</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2019-08-20</date><risdate>2019</risdate><volume>91</volume><issue>16</issue><spage>10407</spage><epage>10412</epage><pages>10407-10412</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Collision-induced unfolding (CIU) has emerged as a valuable method for distinguishing iso-cross-sectional protein ions through their distinct gas-phase unfolding trajectories. CIU shows promise as a high-throughput, structure-sensitive screening technique with potential applications in drug discovery and biotherapeutic characterization. We recently developed a CIU classification workflow to support screening applications that utilized CIU data acquired from a single protein charge state to distinguish immunoglobulin (IgG) subtypes and membrane protein lipid binding. However, distinguishing highly similar protein structures, such as those associated with biotherapeutics, can be challenging. Here, we present an expansion of this classification method that includes CIU data from multiple charge states, or indeed any perturbation to protein structure that differentially affects CIU, into a combined classifier. Using this improved method, we are able to improve the accuracy of existing, single-state classifiers for IgG subtypes and develop an activation-state-sensitive classifier for selected Src kinase inhibitors when data from a single charge state was insufficient to do so. Finally, we employ the combination of multiple charge states and stress conditions to distinguish a highly similar innovator/biosimilar biotherapeutic pair, demonstrating the potential of CIU as a rapid screening tool for drug discovery and biotherapeutic analysis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31310505</pmid><doi>10.1021/acs.analchem.9b02650</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6084-2328</orcidid><orcidid>https://orcid.org/0000-0002-0515-1735</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2019-08, Vol.91 (16), p.10407-10412
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2259368877
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Algorithms
Chemistry
Classification
Classifiers
Data acquisition
Drug discovery
Immunoglobulin G
Ions
Kinases
Lipids
Membrane proteins
Perturbation
Protein structure
Proteins
Workflow
title An Algorithm for Building Multi-State Classifiers Based on Collision-Induced Unfolding Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A29%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Algorithm%20for%20Building%20Multi-State%20Classifiers%20Based%20on%20Collision-Induced%20Unfolding%20Data&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Polasky,%20Daniel%20A&rft.date=2019-08-20&rft.volume=91&rft.issue=16&rft.spage=10407&rft.epage=10412&rft.pages=10407-10412&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.9b02650&rft_dat=%3Cproquest_cross%3E2279821554%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a376t-1a32eac1a69f82c0ddcedfb72d49a9d22b04c8fff54d5119a0ceaa7b3f1c3a0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2279821554&rft_id=info:pmid/31310505&rfr_iscdi=true