Loading…
An Algorithm for Building Multi-State Classifiers Based on Collision-Induced Unfolding Data
Collision-induced unfolding (CIU) has emerged as a valuable method for distinguishing iso-cross-sectional protein ions through their distinct gas-phase unfolding trajectories. CIU shows promise as a high-throughput, structure-sensitive screening technique with potential applications in drug discover...
Saved in:
Published in: | Analytical chemistry (Washington) 2019-08, Vol.91 (16), p.10407-10412 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a376t-1a32eac1a69f82c0ddcedfb72d49a9d22b04c8fff54d5119a0ceaa7b3f1c3a0d3 |
---|---|
cites | cdi_FETCH-LOGICAL-a376t-1a32eac1a69f82c0ddcedfb72d49a9d22b04c8fff54d5119a0ceaa7b3f1c3a0d3 |
container_end_page | 10412 |
container_issue | 16 |
container_start_page | 10407 |
container_title | Analytical chemistry (Washington) |
container_volume | 91 |
creator | Polasky, Daniel A Dixit, Sugyan M Vallejo, Daniel D Kulju, Kathryn D Ruotolo, Brandon T |
description | Collision-induced unfolding (CIU) has emerged as a valuable method for distinguishing iso-cross-sectional protein ions through their distinct gas-phase unfolding trajectories. CIU shows promise as a high-throughput, structure-sensitive screening technique with potential applications in drug discovery and biotherapeutic characterization. We recently developed a CIU classification workflow to support screening applications that utilized CIU data acquired from a single protein charge state to distinguish immunoglobulin (IgG) subtypes and membrane protein lipid binding. However, distinguishing highly similar protein structures, such as those associated with biotherapeutics, can be challenging. Here, we present an expansion of this classification method that includes CIU data from multiple charge states, or indeed any perturbation to protein structure that differentially affects CIU, into a combined classifier. Using this improved method, we are able to improve the accuracy of existing, single-state classifiers for IgG subtypes and develop an activation-state-sensitive classifier for selected Src kinase inhibitors when data from a single charge state was insufficient to do so. Finally, we employ the combination of multiple charge states and stress conditions to distinguish a highly similar innovator/biosimilar biotherapeutic pair, demonstrating the potential of CIU as a rapid screening tool for drug discovery and biotherapeutic analysis. |
doi_str_mv | 10.1021/acs.analchem.9b02650 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2259368877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2279821554</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-1a32eac1a69f82c0ddcedfb72d49a9d22b04c8fff54d5119a0ceaa7b3f1c3a0d3</originalsourceid><addsrcrecordid>eNp9kDtP5DAURi3ECmYH_gFCkWhoMnttx3mUw8ACEqstYCqK6MYPMHJisJOCf78ezTAFxVaWrs75LB1CzigsKDD6C2Vc4IBOvup-0XTASgEHZEYFg7ysa3ZIZgDAc1YBHJOfMb4BUAq0PCLHnHIKAsSMPC-HbOlefLDja58ZH7KryTplh5fsz-RGmz-OOOps5TBGa6wOMbvCqFXmh2zlnbPR-iG_H9Qk03E9GL-Vr3HEE_LDoIv6dPfOyfr3zdPqLn_4e3u_Wj7kyKtyzClyplFSLBtTMwlKpSnTVUwVDTaKsQ4KWRtjRKEEpQ2C1IhVxw2VHEHxObnc7r4H_zHpOLa9jVI7h4P2U2wZEw1PSaoqoRff0Dc_hVRxQ1VNzagQRaKKLSWDjzFo074H22P4bCm0m_htit9-xW938ZN2vhuful6rvfRVOwGwBTb6_uP_bv4DRRCT_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2279821554</pqid></control><display><type>article</type><title>An Algorithm for Building Multi-State Classifiers Based on Collision-Induced Unfolding Data</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Polasky, Daniel A ; Dixit, Sugyan M ; Vallejo, Daniel D ; Kulju, Kathryn D ; Ruotolo, Brandon T</creator><creatorcontrib>Polasky, Daniel A ; Dixit, Sugyan M ; Vallejo, Daniel D ; Kulju, Kathryn D ; Ruotolo, Brandon T</creatorcontrib><description>Collision-induced unfolding (CIU) has emerged as a valuable method for distinguishing iso-cross-sectional protein ions through their distinct gas-phase unfolding trajectories. CIU shows promise as a high-throughput, structure-sensitive screening technique with potential applications in drug discovery and biotherapeutic characterization. We recently developed a CIU classification workflow to support screening applications that utilized CIU data acquired from a single protein charge state to distinguish immunoglobulin (IgG) subtypes and membrane protein lipid binding. However, distinguishing highly similar protein structures, such as those associated with biotherapeutics, can be challenging. Here, we present an expansion of this classification method that includes CIU data from multiple charge states, or indeed any perturbation to protein structure that differentially affects CIU, into a combined classifier. Using this improved method, we are able to improve the accuracy of existing, single-state classifiers for IgG subtypes and develop an activation-state-sensitive classifier for selected Src kinase inhibitors when data from a single charge state was insufficient to do so. Finally, we employ the combination of multiple charge states and stress conditions to distinguish a highly similar innovator/biosimilar biotherapeutic pair, demonstrating the potential of CIU as a rapid screening tool for drug discovery and biotherapeutic analysis.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.9b02650</identifier><identifier>PMID: 31310505</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Chemistry ; Classification ; Classifiers ; Data acquisition ; Drug discovery ; Immunoglobulin G ; Ions ; Kinases ; Lipids ; Membrane proteins ; Perturbation ; Protein structure ; Proteins ; Workflow</subject><ispartof>Analytical chemistry (Washington), 2019-08, Vol.91 (16), p.10407-10412</ispartof><rights>Copyright American Chemical Society Aug 20, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-1a32eac1a69f82c0ddcedfb72d49a9d22b04c8fff54d5119a0ceaa7b3f1c3a0d3</citedby><cites>FETCH-LOGICAL-a376t-1a32eac1a69f82c0ddcedfb72d49a9d22b04c8fff54d5119a0ceaa7b3f1c3a0d3</cites><orcidid>0000-0002-6084-2328 ; 0000-0002-0515-1735</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31310505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Polasky, Daniel A</creatorcontrib><creatorcontrib>Dixit, Sugyan M</creatorcontrib><creatorcontrib>Vallejo, Daniel D</creatorcontrib><creatorcontrib>Kulju, Kathryn D</creatorcontrib><creatorcontrib>Ruotolo, Brandon T</creatorcontrib><title>An Algorithm for Building Multi-State Classifiers Based on Collision-Induced Unfolding Data</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Collision-induced unfolding (CIU) has emerged as a valuable method for distinguishing iso-cross-sectional protein ions through their distinct gas-phase unfolding trajectories. CIU shows promise as a high-throughput, structure-sensitive screening technique with potential applications in drug discovery and biotherapeutic characterization. We recently developed a CIU classification workflow to support screening applications that utilized CIU data acquired from a single protein charge state to distinguish immunoglobulin (IgG) subtypes and membrane protein lipid binding. However, distinguishing highly similar protein structures, such as those associated with biotherapeutics, can be challenging. Here, we present an expansion of this classification method that includes CIU data from multiple charge states, or indeed any perturbation to protein structure that differentially affects CIU, into a combined classifier. Using this improved method, we are able to improve the accuracy of existing, single-state classifiers for IgG subtypes and develop an activation-state-sensitive classifier for selected Src kinase inhibitors when data from a single charge state was insufficient to do so. Finally, we employ the combination of multiple charge states and stress conditions to distinguish a highly similar innovator/biosimilar biotherapeutic pair, demonstrating the potential of CIU as a rapid screening tool for drug discovery and biotherapeutic analysis.</description><subject>Algorithms</subject><subject>Chemistry</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Data acquisition</subject><subject>Drug discovery</subject><subject>Immunoglobulin G</subject><subject>Ions</subject><subject>Kinases</subject><subject>Lipids</subject><subject>Membrane proteins</subject><subject>Perturbation</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Workflow</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kDtP5DAURi3ECmYH_gFCkWhoMnttx3mUw8ACEqstYCqK6MYPMHJisJOCf78ezTAFxVaWrs75LB1CzigsKDD6C2Vc4IBOvup-0XTASgEHZEYFg7ysa3ZIZgDAc1YBHJOfMb4BUAq0PCLHnHIKAsSMPC-HbOlefLDja58ZH7KryTplh5fsz-RGmz-OOOps5TBGa6wOMbvCqFXmh2zlnbPR-iG_H9Qk03E9GL-Vr3HEE_LDoIv6dPfOyfr3zdPqLn_4e3u_Wj7kyKtyzClyplFSLBtTMwlKpSnTVUwVDTaKsQ4KWRtjRKEEpQ2C1IhVxw2VHEHxObnc7r4H_zHpOLa9jVI7h4P2U2wZEw1PSaoqoRff0Dc_hVRxQ1VNzagQRaKKLSWDjzFo074H22P4bCm0m_htit9-xW938ZN2vhuful6rvfRVOwGwBTb6_uP_bv4DRRCT_w</recordid><startdate>20190820</startdate><enddate>20190820</enddate><creator>Polasky, Daniel A</creator><creator>Dixit, Sugyan M</creator><creator>Vallejo, Daniel D</creator><creator>Kulju, Kathryn D</creator><creator>Ruotolo, Brandon T</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6084-2328</orcidid><orcidid>https://orcid.org/0000-0002-0515-1735</orcidid></search><sort><creationdate>20190820</creationdate><title>An Algorithm for Building Multi-State Classifiers Based on Collision-Induced Unfolding Data</title><author>Polasky, Daniel A ; Dixit, Sugyan M ; Vallejo, Daniel D ; Kulju, Kathryn D ; Ruotolo, Brandon T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-1a32eac1a69f82c0ddcedfb72d49a9d22b04c8fff54d5119a0ceaa7b3f1c3a0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Chemistry</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Data acquisition</topic><topic>Drug discovery</topic><topic>Immunoglobulin G</topic><topic>Ions</topic><topic>Kinases</topic><topic>Lipids</topic><topic>Membrane proteins</topic><topic>Perturbation</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polasky, Daniel A</creatorcontrib><creatorcontrib>Dixit, Sugyan M</creatorcontrib><creatorcontrib>Vallejo, Daniel D</creatorcontrib><creatorcontrib>Kulju, Kathryn D</creatorcontrib><creatorcontrib>Ruotolo, Brandon T</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polasky, Daniel A</au><au>Dixit, Sugyan M</au><au>Vallejo, Daniel D</au><au>Kulju, Kathryn D</au><au>Ruotolo, Brandon T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Algorithm for Building Multi-State Classifiers Based on Collision-Induced Unfolding Data</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2019-08-20</date><risdate>2019</risdate><volume>91</volume><issue>16</issue><spage>10407</spage><epage>10412</epage><pages>10407-10412</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Collision-induced unfolding (CIU) has emerged as a valuable method for distinguishing iso-cross-sectional protein ions through their distinct gas-phase unfolding trajectories. CIU shows promise as a high-throughput, structure-sensitive screening technique with potential applications in drug discovery and biotherapeutic characterization. We recently developed a CIU classification workflow to support screening applications that utilized CIU data acquired from a single protein charge state to distinguish immunoglobulin (IgG) subtypes and membrane protein lipid binding. However, distinguishing highly similar protein structures, such as those associated with biotherapeutics, can be challenging. Here, we present an expansion of this classification method that includes CIU data from multiple charge states, or indeed any perturbation to protein structure that differentially affects CIU, into a combined classifier. Using this improved method, we are able to improve the accuracy of existing, single-state classifiers for IgG subtypes and develop an activation-state-sensitive classifier for selected Src kinase inhibitors when data from a single charge state was insufficient to do so. Finally, we employ the combination of multiple charge states and stress conditions to distinguish a highly similar innovator/biosimilar biotherapeutic pair, demonstrating the potential of CIU as a rapid screening tool for drug discovery and biotherapeutic analysis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31310505</pmid><doi>10.1021/acs.analchem.9b02650</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6084-2328</orcidid><orcidid>https://orcid.org/0000-0002-0515-1735</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2019-08, Vol.91 (16), p.10407-10412 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_2259368877 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Algorithms Chemistry Classification Classifiers Data acquisition Drug discovery Immunoglobulin G Ions Kinases Lipids Membrane proteins Perturbation Protein structure Proteins Workflow |
title | An Algorithm for Building Multi-State Classifiers Based on Collision-Induced Unfolding Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A29%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Algorithm%20for%20Building%20Multi-State%20Classifiers%20Based%20on%20Collision-Induced%20Unfolding%20Data&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Polasky,%20Daniel%20A&rft.date=2019-08-20&rft.volume=91&rft.issue=16&rft.spage=10407&rft.epage=10412&rft.pages=10407-10412&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.9b02650&rft_dat=%3Cproquest_cross%3E2279821554%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a376t-1a32eac1a69f82c0ddcedfb72d49a9d22b04c8fff54d5119a0ceaa7b3f1c3a0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2279821554&rft_id=info:pmid/31310505&rfr_iscdi=true |