Loading…

A robust algorithm for heart rate variability time series artefact correction using novel beat classification

Purpose: Heart rate variability is a commonly used measurement to evaluate functioning of autonomic nervous system, psychophysiological stress, and exercise intensity and recovery. HRV measurements contain artefacts such as extra, missed or misaligned beat detections, which can produce significant d...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medical engineering & technology 2019-04, Vol.43 (3), p.173-181
Main Authors: Lipponen, Jukka A., Tarvainen, Mika P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose: Heart rate variability is a commonly used measurement to evaluate functioning of autonomic nervous system, psychophysiological stress, and exercise intensity and recovery. HRV measurements contain artefacts such as extra, missed or misaligned beat detections, which can produce significant distortion on HRV parameters. In this paper, a robust automatic method for artefact detection from HRV time series is proposed. Methods: The proposed detection method is based on time-varying thresholds estimated from distribution of successive RR-interval differences combined with a novel beat classification scheme. The method is validated using simulated extra, missed and misaligned beat detections as well as real artefacts such as atrial and ventricular ectopic beats. Results: The sensitivity of the algorithm to detect simulated missed/extra beats was 100%. The sensitivity to detect real atrial and ventricular ectopic beats was 96.96%, the corresponding specificity being 99.94%. The mean error in HRV parameters after correction was
ISSN:0309-1902
1464-522X
DOI:10.1080/03091902.2019.1640306