Loading…

Linear stability of modulated circular Couette flow

The linear stability of modulated circular Couette flow to axisymmetric disturbances is examined in the narrow-gap limit. The outer cylinder is assumed stationary, while the inner is modulated both with and without a mean rotation. The equations governing the disturbance motion are solved by a Galer...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 1976-06, Vol.75 (4), p.625-646
Main Authors: Riley, P. J., Laurence, R. L.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c422t-355b742739027e29ddcca43a807d374c2f62aaac5ea91b5d25c8b26486c7e1133
cites cdi_FETCH-LOGICAL-c422t-355b742739027e29ddcca43a807d374c2f62aaac5ea91b5d25c8b26486c7e1133
container_end_page 646
container_issue 4
container_start_page 625
container_title Journal of fluid mechanics
container_volume 75
creator Riley, P. J.
Laurence, R. L.
description The linear stability of modulated circular Couette flow to axisymmetric disturbances is examined in the narrow-gap limit. The outer cylinder is assumed stationary, while the inner is modulated both with and without a mean rotation. The equations governing the disturbance motion are solved by a Galerkin expansion with time-dependent coefficients, and the stability of the motion determined by Floquet theory. Modulation is found, in general, to destabilize the flow due to steady rotation, although weak stabilization is found for some modulation amplitudes at intermediate frequencies.
doi_str_mv 10.1017/S0022112076000426
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_22610171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112076000426</cupid><sourcerecordid>22610171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-355b742739027e29ddcca43a807d374c2f62aaac5ea91b5d25c8b26486c7e1133</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANxy4haw13_JEVVQkIqAAmfLcRzkktTFdgR9exK14oLEaVeab3a0g9A5wZcEE3n1gjEAIYClwBgzEAdoQpgocykYP0STUc5H_RidxLjCmFBcygmiC7e2OmQx6cq1Lm0z32Sdr_tWJ1tnxgUzrCGb-d6mZLOm9V-n6KjRbbRn-zlFb7c3r7O7fPE4v59dL3LDAFJOOa8kA0lLDNJCWdfGaEZ1gWVNJTPQCNBaG251SSpeAzdFBYIVwkhLCKVTdLG7uwn-s7cxqc5FY9tWr63vowIQ4-9kAMkONMHHGGyjNsF1OmwVwWpE1J96Bk--87iY7PevQYcPJSSVXIn5s1o-LAvK50w9DTzdZ-iuCq5-t2rl-7AeCvgn5Qd5nXR1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>22610171</pqid></control><display><type>article</type><title>Linear stability of modulated circular Couette flow</title><source>Cambridge University Press:JISC Collections:Full Collection Digital Archives (STM and HSS) (218 titles)</source><creator>Riley, P. J. ; Laurence, R. L.</creator><creatorcontrib>Riley, P. J. ; Laurence, R. L.</creatorcontrib><description>The linear stability of modulated circular Couette flow to axisymmetric disturbances is examined in the narrow-gap limit. The outer cylinder is assumed stationary, while the inner is modulated both with and without a mean rotation. The equations governing the disturbance motion are solved by a Galerkin expansion with time-dependent coefficients, and the stability of the motion determined by Floquet theory. Modulation is found, in general, to destabilize the flow due to steady rotation, although weak stabilization is found for some modulation amplitudes at intermediate frequencies.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112076000426</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Journal of fluid mechanics, 1976-06, Vol.75 (4), p.625-646</ispartof><rights>1976 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-355b742739027e29ddcca43a807d374c2f62aaac5ea91b5d25c8b26486c7e1133</citedby><cites>FETCH-LOGICAL-c422t-355b742739027e29ddcca43a807d374c2f62aaac5ea91b5d25c8b26486c7e1133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112076000426/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,55689</link.rule.ids></links><search><creatorcontrib>Riley, P. J.</creatorcontrib><creatorcontrib>Laurence, R. L.</creatorcontrib><title>Linear stability of modulated circular Couette flow</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The linear stability of modulated circular Couette flow to axisymmetric disturbances is examined in the narrow-gap limit. The outer cylinder is assumed stationary, while the inner is modulated both with and without a mean rotation. The equations governing the disturbance motion are solved by a Galerkin expansion with time-dependent coefficients, and the stability of the motion determined by Floquet theory. Modulation is found, in general, to destabilize the flow due to steady rotation, although weak stabilization is found for some modulation amplitudes at intermediate frequencies.</description><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1976</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANxy4haw13_JEVVQkIqAAmfLcRzkktTFdgR9exK14oLEaVeab3a0g9A5wZcEE3n1gjEAIYClwBgzEAdoQpgocykYP0STUc5H_RidxLjCmFBcygmiC7e2OmQx6cq1Lm0z32Sdr_tWJ1tnxgUzrCGb-d6mZLOm9V-n6KjRbbRn-zlFb7c3r7O7fPE4v59dL3LDAFJOOa8kA0lLDNJCWdfGaEZ1gWVNJTPQCNBaG251SSpeAzdFBYIVwkhLCKVTdLG7uwn-s7cxqc5FY9tWr63vowIQ4-9kAMkONMHHGGyjNsF1OmwVwWpE1J96Bk--87iY7PevQYcPJSSVXIn5s1o-LAvK50w9DTzdZ-iuCq5-t2rl-7AeCvgn5Qd5nXR1</recordid><startdate>19760625</startdate><enddate>19760625</enddate><creator>Riley, P. J.</creator><creator>Laurence, R. L.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19760625</creationdate><title>Linear stability of modulated circular Couette flow</title><author>Riley, P. J. ; Laurence, R. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-355b742739027e29ddcca43a807d374c2f62aaac5ea91b5d25c8b26486c7e1133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1976</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riley, P. J.</creatorcontrib><creatorcontrib>Laurence, R. L.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riley, P. J.</au><au>Laurence, R. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear stability of modulated circular Couette flow</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>1976-06-25</date><risdate>1976</risdate><volume>75</volume><issue>4</issue><spage>625</spage><epage>646</epage><pages>625-646</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The linear stability of modulated circular Couette flow to axisymmetric disturbances is examined in the narrow-gap limit. The outer cylinder is assumed stationary, while the inner is modulated both with and without a mean rotation. The equations governing the disturbance motion are solved by a Galerkin expansion with time-dependent coefficients, and the stability of the motion determined by Floquet theory. Modulation is found, in general, to destabilize the flow due to steady rotation, although weak stabilization is found for some modulation amplitudes at intermediate frequencies.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112076000426</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 1976-06, Vol.75 (4), p.625-646
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_22610171
source Cambridge University Press:JISC Collections:Full Collection Digital Archives (STM and HSS) (218 titles)
title Linear stability of modulated circular Couette flow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A49%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20stability%20of%20modulated%20circular%20Couette%20flow&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Riley,%20P.%20J.&rft.date=1976-06-25&rft.volume=75&rft.issue=4&rft.spage=625&rft.epage=646&rft.pages=625-646&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/S0022112076000426&rft_dat=%3Cproquest_cross%3E22610171%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-355b742739027e29ddcca43a807d374c2f62aaac5ea91b5d25c8b26486c7e1133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=22610171&rft_id=info:pmid/&rft_cupid=10_1017_S0022112076000426&rfr_iscdi=true