Loading…
Linear stability of modulated circular Couette flow
The linear stability of modulated circular Couette flow to axisymmetric disturbances is examined in the narrow-gap limit. The outer cylinder is assumed stationary, while the inner is modulated both with and without a mean rotation. The equations governing the disturbance motion are solved by a Galer...
Saved in:
Published in: | Journal of fluid mechanics 1976-06, Vol.75 (4), p.625-646 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c422t-355b742739027e29ddcca43a807d374c2f62aaac5ea91b5d25c8b26486c7e1133 |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-355b742739027e29ddcca43a807d374c2f62aaac5ea91b5d25c8b26486c7e1133 |
container_end_page | 646 |
container_issue | 4 |
container_start_page | 625 |
container_title | Journal of fluid mechanics |
container_volume | 75 |
creator | Riley, P. J. Laurence, R. L. |
description | The linear stability of modulated circular Couette flow to axisymmetric disturbances is examined in the narrow-gap limit. The outer cylinder is assumed stationary, while the inner is modulated both with and without a mean rotation. The equations governing the disturbance motion are solved by a Galerkin expansion with time-dependent coefficients, and the stability of the motion determined by Floquet theory. Modulation is found, in general, to destabilize the flow due to steady rotation, although weak stabilization is found for some modulation amplitudes at intermediate frequencies. |
doi_str_mv | 10.1017/S0022112076000426 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_22610171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112076000426</cupid><sourcerecordid>22610171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-355b742739027e29ddcca43a807d374c2f62aaac5ea91b5d25c8b26486c7e1133</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANxy4haw13_JEVVQkIqAAmfLcRzkktTFdgR9exK14oLEaVeab3a0g9A5wZcEE3n1gjEAIYClwBgzEAdoQpgocykYP0STUc5H_RidxLjCmFBcygmiC7e2OmQx6cq1Lm0z32Sdr_tWJ1tnxgUzrCGb-d6mZLOm9V-n6KjRbbRn-zlFb7c3r7O7fPE4v59dL3LDAFJOOa8kA0lLDNJCWdfGaEZ1gWVNJTPQCNBaG251SSpeAzdFBYIVwkhLCKVTdLG7uwn-s7cxqc5FY9tWr63vowIQ4-9kAMkONMHHGGyjNsF1OmwVwWpE1J96Bk--87iY7PevQYcPJSSVXIn5s1o-LAvK50w9DTzdZ-iuCq5-t2rl-7AeCvgn5Qd5nXR1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>22610171</pqid></control><display><type>article</type><title>Linear stability of modulated circular Couette flow</title><source>Cambridge University Press:JISC Collections:Full Collection Digital Archives (STM and HSS) (218 titles)</source><creator>Riley, P. J. ; Laurence, R. L.</creator><creatorcontrib>Riley, P. J. ; Laurence, R. L.</creatorcontrib><description>The linear stability of modulated circular Couette flow to axisymmetric disturbances is examined in the narrow-gap limit. The outer cylinder is assumed stationary, while the inner is modulated both with and without a mean rotation. The equations governing the disturbance motion are solved by a Galerkin expansion with time-dependent coefficients, and the stability of the motion determined by Floquet theory. Modulation is found, in general, to destabilize the flow due to steady rotation, although weak stabilization is found for some modulation amplitudes at intermediate frequencies.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112076000426</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Journal of fluid mechanics, 1976-06, Vol.75 (4), p.625-646</ispartof><rights>1976 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-355b742739027e29ddcca43a807d374c2f62aaac5ea91b5d25c8b26486c7e1133</citedby><cites>FETCH-LOGICAL-c422t-355b742739027e29ddcca43a807d374c2f62aaac5ea91b5d25c8b26486c7e1133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112076000426/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,55689</link.rule.ids></links><search><creatorcontrib>Riley, P. J.</creatorcontrib><creatorcontrib>Laurence, R. L.</creatorcontrib><title>Linear stability of modulated circular Couette flow</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The linear stability of modulated circular Couette flow to axisymmetric disturbances is examined in the narrow-gap limit. The outer cylinder is assumed stationary, while the inner is modulated both with and without a mean rotation. The equations governing the disturbance motion are solved by a Galerkin expansion with time-dependent coefficients, and the stability of the motion determined by Floquet theory. Modulation is found, in general, to destabilize the flow due to steady rotation, although weak stabilization is found for some modulation amplitudes at intermediate frequencies.</description><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1976</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANxy4haw13_JEVVQkIqAAmfLcRzkktTFdgR9exK14oLEaVeab3a0g9A5wZcEE3n1gjEAIYClwBgzEAdoQpgocykYP0STUc5H_RidxLjCmFBcygmiC7e2OmQx6cq1Lm0z32Sdr_tWJ1tnxgUzrCGb-d6mZLOm9V-n6KjRbbRn-zlFb7c3r7O7fPE4v59dL3LDAFJOOa8kA0lLDNJCWdfGaEZ1gWVNJTPQCNBaG251SSpeAzdFBYIVwkhLCKVTdLG7uwn-s7cxqc5FY9tWr63vowIQ4-9kAMkONMHHGGyjNsF1OmwVwWpE1J96Bk--87iY7PevQYcPJSSVXIn5s1o-LAvK50w9DTzdZ-iuCq5-t2rl-7AeCvgn5Qd5nXR1</recordid><startdate>19760625</startdate><enddate>19760625</enddate><creator>Riley, P. J.</creator><creator>Laurence, R. L.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19760625</creationdate><title>Linear stability of modulated circular Couette flow</title><author>Riley, P. J. ; Laurence, R. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-355b742739027e29ddcca43a807d374c2f62aaac5ea91b5d25c8b26486c7e1133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1976</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riley, P. J.</creatorcontrib><creatorcontrib>Laurence, R. L.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riley, P. J.</au><au>Laurence, R. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear stability of modulated circular Couette flow</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>1976-06-25</date><risdate>1976</risdate><volume>75</volume><issue>4</issue><spage>625</spage><epage>646</epage><pages>625-646</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The linear stability of modulated circular Couette flow to axisymmetric disturbances is examined in the narrow-gap limit. The outer cylinder is assumed stationary, while the inner is modulated both with and without a mean rotation. The equations governing the disturbance motion are solved by a Galerkin expansion with time-dependent coefficients, and the stability of the motion determined by Floquet theory. Modulation is found, in general, to destabilize the flow due to steady rotation, although weak stabilization is found for some modulation amplitudes at intermediate frequencies.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112076000426</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 1976-06, Vol.75 (4), p.625-646 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_22610171 |
source | Cambridge University Press:JISC Collections:Full Collection Digital Archives (STM and HSS) (218 titles) |
title | Linear stability of modulated circular Couette flow |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A49%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20stability%20of%20modulated%20circular%20Couette%20flow&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Riley,%20P.%20J.&rft.date=1976-06-25&rft.volume=75&rft.issue=4&rft.spage=625&rft.epage=646&rft.pages=625-646&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/S0022112076000426&rft_dat=%3Cproquest_cross%3E22610171%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-355b742739027e29ddcca43a807d374c2f62aaac5ea91b5d25c8b26486c7e1133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=22610171&rft_id=info:pmid/&rft_cupid=10_1017_S0022112076000426&rfr_iscdi=true |