Loading…
Treatment of boar sperm with nanoparticles for improved fertility
Continuous progress in nanoscience has allowed the synthesis of various nanoscale particles, known as nanoparticles or nanomaterials which, by harnessing unique physico-chemical properties, are crucial for multiple bio-applications. Despite the revealed toxicity (nanotoxicity) of nanoparticles in va...
Saved in:
Published in: | Theriogenology 2019-10, Vol.137, p.75-81 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Continuous progress in nanoscience has allowed the synthesis of various nanoscale particles, known as nanoparticles or nanomaterials which, by harnessing unique physico-chemical properties, are crucial for multiple bio-applications. Despite the revealed toxicity (nanotoxicity) of nanoparticles in various in vitro and in vivo studies, their careful design for biocompatibility and effective interactions with single-celled and multi-cellular organisms has permitted their use in several fields of research and biomedicine. The various nanoparticles synthesized and applied in the veterinary sciences, including reproductive biology, have shown potential to influence routine practices in animal production systems. These include post-collection manipulation of semen and the protection of high-quality spermatozoa to extend their preservation, and to improve sperm-related biotechnologies such as sperm-mediated gene transfer, sperm sorting, sex-sorting, and cryopreservation. Therefore, the application of nanotechnology-based tools to semen may enhance assisted reproductive technologies for biomedical applications and improve economic productivity for farmers. Here, we review the efficacy of available techniques and emerging tools of nanotechnology that might be useful for further selection of high quality boar spermatozoa and productivity improvement. |
---|---|
ISSN: | 0093-691X 1879-3231 |
DOI: | 10.1016/j.theriogenology.2019.05.040 |