Loading…
Lightweight Pyramid Networks for Image Deraining
Existing deep convolutional neural networks (CNNs) have found major success in image deraining, but at the expense of an enormous number of parameters. This limits their potential applications, e.g., in mobile devices. In this paper, we propose a lightweight pyramid networt (LPNet) for single-image...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2020-06, Vol.31 (6), p.1794-1807 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c351t-d6ffebe7e21f84b264a3bbd5cbeb0592f007c43e93ec643be9855e06d5cb492e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c351t-d6ffebe7e21f84b264a3bbd5cbeb0592f007c43e93ec643be9855e06d5cb492e3 |
container_end_page | 1807 |
container_issue | 6 |
container_start_page | 1794 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 31 |
creator | Fu, Xueyang Liang, Borong Huang, Yue Ding, Xinghao Paisley, John |
description | Existing deep convolutional neural networks (CNNs) have found major success in image deraining, but at the expense of an enormous number of parameters. This limits their potential applications, e.g., in mobile devices. In this paper, we propose a lightweight pyramid networt (LPNet) for single-image deraining. Instead of designing a complex network structure, we use domain-specific knowledge to simplify the learning process. In particular, we find that by introducing the mature Gaussian-Laplacian image pyramid decomposition technology to the neural network, the learning problem at each pyramid level is greatly simplified and can be handled by a relatively shallow network with few parameters. We adopt recursive and residual network structures to build the proposed LPNet, which has less than 8K parameters while still achieving the state-of-the-art performance on rain removal. We also discuss the potential value of LPNet for other low- and high-level vision tasks. |
doi_str_mv | 10.1109/TNNLS.2019.2926481 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2261974871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8767931</ieee_id><sourcerecordid>2261974871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-d6ffebe7e21f84b264a3bbd5cbeb0592f007c43e93ec643be9855e06d5cb492e3</originalsourceid><addsrcrecordid>eNpdkEtLw0AQgBdRrNT-AQUJePGSuq_s4yj1VQhVsIK3JY9JTW2SuptQ-u_d2NqDc5gZmG-G4UPoguAxIVjfzmez-G1MMdFjqqngihyhM0oEDSlT6vjQy48BGjm3xD4EjgTXp2jACKOaMHaGcFwuPtsN9Dl43dqkKvNgBu2msV8uKBobTKtkAcE92KSsy3pxjk6KZOVgtK9D9P74MJ88h_HL03RyF4cZi0gb5qIoIAUJlBSKp_7BhKVpHmUppDjStMBYZpyBZpAJzlLQKooAi57gmgIbopvd3bVtvjtwralKl8FqldTQdM5QKoiWXEni0et_6LLpbO2_M5RjzaTWCnuK7qjMNs5ZKMzallVit4Zg0ys1v0pNr9Tslfqlq_3pLq0gP6z8CfTA5Q4oAeAwVlJI7ZkfH3h5PA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409379980</pqid></control><display><type>article</type><title>Lightweight Pyramid Networks for Image Deraining</title><source>IEEE Xplore (Online service)</source><creator>Fu, Xueyang ; Liang, Borong ; Huang, Yue ; Ding, Xinghao ; Paisley, John</creator><creatorcontrib>Fu, Xueyang ; Liang, Borong ; Huang, Yue ; Ding, Xinghao ; Paisley, John</creatorcontrib><description>Existing deep convolutional neural networks (CNNs) have found major success in image deraining, but at the expense of an enormous number of parameters. This limits their potential applications, e.g., in mobile devices. In this paper, we propose a lightweight pyramid networt (LPNet) for single-image deraining. Instead of designing a complex network structure, we use domain-specific knowledge to simplify the learning process. In particular, we find that by introducing the mature Gaussian-Laplacian image pyramid decomposition technology to the neural network, the learning problem at each pyramid level is greatly simplified and can be handled by a relatively shallow network with few parameters. We adopt recursive and residual network structures to build the proposed LPNet, which has less than 8K parameters while still achieving the state-of-the-art performance on rain removal. We also discuss the potential value of LPNet for other low- and high-level vision tasks.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2019.2926481</identifier><identifier>PMID: 31329133</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Computer vision ; Deep convolutional neural network (CNN) ; Electronic devices ; Feature extraction ; image pyramid ; Knowledge engineering ; Laplace equations ; Learning ; Learning systems ; Lightweight ; lightweight networks ; Neural networks ; Parameters ; Rain ; rain removal ; residual learning ; Task analysis</subject><ispartof>IEEE transaction on neural networks and learning systems, 2020-06, Vol.31 (6), p.1794-1807</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-d6ffebe7e21f84b264a3bbd5cbeb0592f007c43e93ec643be9855e06d5cb492e3</citedby><cites>FETCH-LOGICAL-c351t-d6ffebe7e21f84b264a3bbd5cbeb0592f007c43e93ec643be9855e06d5cb492e3</cites><orcidid>0000-0001-8036-4071 ; 0000-0002-3036-6754 ; 0000-0003-2288-5287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8767931$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,54783</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31329133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Xueyang</creatorcontrib><creatorcontrib>Liang, Borong</creatorcontrib><creatorcontrib>Huang, Yue</creatorcontrib><creatorcontrib>Ding, Xinghao</creatorcontrib><creatorcontrib>Paisley, John</creatorcontrib><title>Lightweight Pyramid Networks for Image Deraining</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Existing deep convolutional neural networks (CNNs) have found major success in image deraining, but at the expense of an enormous number of parameters. This limits their potential applications, e.g., in mobile devices. In this paper, we propose a lightweight pyramid networt (LPNet) for single-image deraining. Instead of designing a complex network structure, we use domain-specific knowledge to simplify the learning process. In particular, we find that by introducing the mature Gaussian-Laplacian image pyramid decomposition technology to the neural network, the learning problem at each pyramid level is greatly simplified and can be handled by a relatively shallow network with few parameters. We adopt recursive and residual network structures to build the proposed LPNet, which has less than 8K parameters while still achieving the state-of-the-art performance on rain removal. We also discuss the potential value of LPNet for other low- and high-level vision tasks.</description><subject>Artificial neural networks</subject><subject>Computer vision</subject><subject>Deep convolutional neural network (CNN)</subject><subject>Electronic devices</subject><subject>Feature extraction</subject><subject>image pyramid</subject><subject>Knowledge engineering</subject><subject>Laplace equations</subject><subject>Learning</subject><subject>Learning systems</subject><subject>Lightweight</subject><subject>lightweight networks</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Rain</subject><subject>rain removal</subject><subject>residual learning</subject><subject>Task analysis</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLw0AQgBdRrNT-AQUJePGSuq_s4yj1VQhVsIK3JY9JTW2SuptQ-u_d2NqDc5gZmG-G4UPoguAxIVjfzmez-G1MMdFjqqngihyhM0oEDSlT6vjQy48BGjm3xD4EjgTXp2jACKOaMHaGcFwuPtsN9Dl43dqkKvNgBu2msV8uKBobTKtkAcE92KSsy3pxjk6KZOVgtK9D9P74MJ88h_HL03RyF4cZi0gb5qIoIAUJlBSKp_7BhKVpHmUppDjStMBYZpyBZpAJzlLQKooAi57gmgIbopvd3bVtvjtwralKl8FqldTQdM5QKoiWXEni0et_6LLpbO2_M5RjzaTWCnuK7qjMNs5ZKMzallVit4Zg0ys1v0pNr9Tslfqlq_3pLq0gP6z8CfTA5Q4oAeAwVlJI7ZkfH3h5PA</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Fu, Xueyang</creator><creator>Liang, Borong</creator><creator>Huang, Yue</creator><creator>Ding, Xinghao</creator><creator>Paisley, John</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8036-4071</orcidid><orcidid>https://orcid.org/0000-0002-3036-6754</orcidid><orcidid>https://orcid.org/0000-0003-2288-5287</orcidid></search><sort><creationdate>20200601</creationdate><title>Lightweight Pyramid Networks for Image Deraining</title><author>Fu, Xueyang ; Liang, Borong ; Huang, Yue ; Ding, Xinghao ; Paisley, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-d6ffebe7e21f84b264a3bbd5cbeb0592f007c43e93ec643be9855e06d5cb492e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Computer vision</topic><topic>Deep convolutional neural network (CNN)</topic><topic>Electronic devices</topic><topic>Feature extraction</topic><topic>image pyramid</topic><topic>Knowledge engineering</topic><topic>Laplace equations</topic><topic>Learning</topic><topic>Learning systems</topic><topic>Lightweight</topic><topic>lightweight networks</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Rain</topic><topic>rain removal</topic><topic>residual learning</topic><topic>Task analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Fu, Xueyang</creatorcontrib><creatorcontrib>Liang, Borong</creatorcontrib><creatorcontrib>Huang, Yue</creatorcontrib><creatorcontrib>Ding, Xinghao</creatorcontrib><creatorcontrib>Paisley, John</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Xueyang</au><au>Liang, Borong</au><au>Huang, Yue</au><au>Ding, Xinghao</au><au>Paisley, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lightweight Pyramid Networks for Image Deraining</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>31</volume><issue>6</issue><spage>1794</spage><epage>1807</epage><pages>1794-1807</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Existing deep convolutional neural networks (CNNs) have found major success in image deraining, but at the expense of an enormous number of parameters. This limits their potential applications, e.g., in mobile devices. In this paper, we propose a lightweight pyramid networt (LPNet) for single-image deraining. Instead of designing a complex network structure, we use domain-specific knowledge to simplify the learning process. In particular, we find that by introducing the mature Gaussian-Laplacian image pyramid decomposition technology to the neural network, the learning problem at each pyramid level is greatly simplified and can be handled by a relatively shallow network with few parameters. We adopt recursive and residual network structures to build the proposed LPNet, which has less than 8K parameters while still achieving the state-of-the-art performance on rain removal. We also discuss the potential value of LPNet for other low- and high-level vision tasks.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31329133</pmid><doi>10.1109/TNNLS.2019.2926481</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8036-4071</orcidid><orcidid>https://orcid.org/0000-0002-3036-6754</orcidid><orcidid>https://orcid.org/0000-0003-2288-5287</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2020-06, Vol.31 (6), p.1794-1807 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_miscellaneous_2261974871 |
source | IEEE Xplore (Online service) |
subjects | Artificial neural networks Computer vision Deep convolutional neural network (CNN) Electronic devices Feature extraction image pyramid Knowledge engineering Laplace equations Learning Learning systems Lightweight lightweight networks Neural networks Parameters Rain rain removal residual learning Task analysis |
title | Lightweight Pyramid Networks for Image Deraining |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A18%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lightweight%20Pyramid%20Networks%20for%20Image%20Deraining&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Fu,%20Xueyang&rft.date=2020-06-01&rft.volume=31&rft.issue=6&rft.spage=1794&rft.epage=1807&rft.pages=1794-1807&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2019.2926481&rft_dat=%3Cproquest_pubme%3E2261974871%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-d6ffebe7e21f84b264a3bbd5cbeb0592f007c43e93ec643be9855e06d5cb492e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2409379980&rft_id=info:pmid/31329133&rft_ieee_id=8767931&rfr_iscdi=true |