Loading…

Lightweight Pyramid Networks for Image Deraining

Existing deep convolutional neural networks (CNNs) have found major success in image deraining, but at the expense of an enormous number of parameters. This limits their potential applications, e.g., in mobile devices. In this paper, we propose a lightweight pyramid networt (LPNet) for single-image...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2020-06, Vol.31 (6), p.1794-1807
Main Authors: Fu, Xueyang, Liang, Borong, Huang, Yue, Ding, Xinghao, Paisley, John
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c351t-d6ffebe7e21f84b264a3bbd5cbeb0592f007c43e93ec643be9855e06d5cb492e3
cites cdi_FETCH-LOGICAL-c351t-d6ffebe7e21f84b264a3bbd5cbeb0592f007c43e93ec643be9855e06d5cb492e3
container_end_page 1807
container_issue 6
container_start_page 1794
container_title IEEE transaction on neural networks and learning systems
container_volume 31
creator Fu, Xueyang
Liang, Borong
Huang, Yue
Ding, Xinghao
Paisley, John
description Existing deep convolutional neural networks (CNNs) have found major success in image deraining, but at the expense of an enormous number of parameters. This limits their potential applications, e.g., in mobile devices. In this paper, we propose a lightweight pyramid networt (LPNet) for single-image deraining. Instead of designing a complex network structure, we use domain-specific knowledge to simplify the learning process. In particular, we find that by introducing the mature Gaussian-Laplacian image pyramid decomposition technology to the neural network, the learning problem at each pyramid level is greatly simplified and can be handled by a relatively shallow network with few parameters. We adopt recursive and residual network structures to build the proposed LPNet, which has less than 8K parameters while still achieving the state-of-the-art performance on rain removal. We also discuss the potential value of LPNet for other low- and high-level vision tasks.
doi_str_mv 10.1109/TNNLS.2019.2926481
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2261974871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8767931</ieee_id><sourcerecordid>2261974871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-d6ffebe7e21f84b264a3bbd5cbeb0592f007c43e93ec643be9855e06d5cb492e3</originalsourceid><addsrcrecordid>eNpdkEtLw0AQgBdRrNT-AQUJePGSuq_s4yj1VQhVsIK3JY9JTW2SuptQ-u_d2NqDc5gZmG-G4UPoguAxIVjfzmez-G1MMdFjqqngihyhM0oEDSlT6vjQy48BGjm3xD4EjgTXp2jACKOaMHaGcFwuPtsN9Dl43dqkKvNgBu2msV8uKBobTKtkAcE92KSsy3pxjk6KZOVgtK9D9P74MJ88h_HL03RyF4cZi0gb5qIoIAUJlBSKp_7BhKVpHmUppDjStMBYZpyBZpAJzlLQKooAi57gmgIbopvd3bVtvjtwralKl8FqldTQdM5QKoiWXEni0et_6LLpbO2_M5RjzaTWCnuK7qjMNs5ZKMzallVit4Zg0ys1v0pNr9Tslfqlq_3pLq0gP6z8CfTA5Q4oAeAwVlJI7ZkfH3h5PA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409379980</pqid></control><display><type>article</type><title>Lightweight Pyramid Networks for Image Deraining</title><source>IEEE Xplore (Online service)</source><creator>Fu, Xueyang ; Liang, Borong ; Huang, Yue ; Ding, Xinghao ; Paisley, John</creator><creatorcontrib>Fu, Xueyang ; Liang, Borong ; Huang, Yue ; Ding, Xinghao ; Paisley, John</creatorcontrib><description>Existing deep convolutional neural networks (CNNs) have found major success in image deraining, but at the expense of an enormous number of parameters. This limits their potential applications, e.g., in mobile devices. In this paper, we propose a lightweight pyramid networt (LPNet) for single-image deraining. Instead of designing a complex network structure, we use domain-specific knowledge to simplify the learning process. In particular, we find that by introducing the mature Gaussian-Laplacian image pyramid decomposition technology to the neural network, the learning problem at each pyramid level is greatly simplified and can be handled by a relatively shallow network with few parameters. We adopt recursive and residual network structures to build the proposed LPNet, which has less than 8K parameters while still achieving the state-of-the-art performance on rain removal. We also discuss the potential value of LPNet for other low- and high-level vision tasks.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2019.2926481</identifier><identifier>PMID: 31329133</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Computer vision ; Deep convolutional neural network (CNN) ; Electronic devices ; Feature extraction ; image pyramid ; Knowledge engineering ; Laplace equations ; Learning ; Learning systems ; Lightweight ; lightweight networks ; Neural networks ; Parameters ; Rain ; rain removal ; residual learning ; Task analysis</subject><ispartof>IEEE transaction on neural networks and learning systems, 2020-06, Vol.31 (6), p.1794-1807</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-d6ffebe7e21f84b264a3bbd5cbeb0592f007c43e93ec643be9855e06d5cb492e3</citedby><cites>FETCH-LOGICAL-c351t-d6ffebe7e21f84b264a3bbd5cbeb0592f007c43e93ec643be9855e06d5cb492e3</cites><orcidid>0000-0001-8036-4071 ; 0000-0002-3036-6754 ; 0000-0003-2288-5287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8767931$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,54783</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31329133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Xueyang</creatorcontrib><creatorcontrib>Liang, Borong</creatorcontrib><creatorcontrib>Huang, Yue</creatorcontrib><creatorcontrib>Ding, Xinghao</creatorcontrib><creatorcontrib>Paisley, John</creatorcontrib><title>Lightweight Pyramid Networks for Image Deraining</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Existing deep convolutional neural networks (CNNs) have found major success in image deraining, but at the expense of an enormous number of parameters. This limits their potential applications, e.g., in mobile devices. In this paper, we propose a lightweight pyramid networt (LPNet) for single-image deraining. Instead of designing a complex network structure, we use domain-specific knowledge to simplify the learning process. In particular, we find that by introducing the mature Gaussian-Laplacian image pyramid decomposition technology to the neural network, the learning problem at each pyramid level is greatly simplified and can be handled by a relatively shallow network with few parameters. We adopt recursive and residual network structures to build the proposed LPNet, which has less than 8K parameters while still achieving the state-of-the-art performance on rain removal. We also discuss the potential value of LPNet for other low- and high-level vision tasks.</description><subject>Artificial neural networks</subject><subject>Computer vision</subject><subject>Deep convolutional neural network (CNN)</subject><subject>Electronic devices</subject><subject>Feature extraction</subject><subject>image pyramid</subject><subject>Knowledge engineering</subject><subject>Laplace equations</subject><subject>Learning</subject><subject>Learning systems</subject><subject>Lightweight</subject><subject>lightweight networks</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Rain</subject><subject>rain removal</subject><subject>residual learning</subject><subject>Task analysis</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLw0AQgBdRrNT-AQUJePGSuq_s4yj1VQhVsIK3JY9JTW2SuptQ-u_d2NqDc5gZmG-G4UPoguAxIVjfzmez-G1MMdFjqqngihyhM0oEDSlT6vjQy48BGjm3xD4EjgTXp2jACKOaMHaGcFwuPtsN9Dl43dqkKvNgBu2msV8uKBobTKtkAcE92KSsy3pxjk6KZOVgtK9D9P74MJ88h_HL03RyF4cZi0gb5qIoIAUJlBSKp_7BhKVpHmUppDjStMBYZpyBZpAJzlLQKooAi57gmgIbopvd3bVtvjtwralKl8FqldTQdM5QKoiWXEni0et_6LLpbO2_M5RjzaTWCnuK7qjMNs5ZKMzallVit4Zg0ys1v0pNr9Tslfqlq_3pLq0gP6z8CfTA5Q4oAeAwVlJI7ZkfH3h5PA</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Fu, Xueyang</creator><creator>Liang, Borong</creator><creator>Huang, Yue</creator><creator>Ding, Xinghao</creator><creator>Paisley, John</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8036-4071</orcidid><orcidid>https://orcid.org/0000-0002-3036-6754</orcidid><orcidid>https://orcid.org/0000-0003-2288-5287</orcidid></search><sort><creationdate>20200601</creationdate><title>Lightweight Pyramid Networks for Image Deraining</title><author>Fu, Xueyang ; Liang, Borong ; Huang, Yue ; Ding, Xinghao ; Paisley, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-d6ffebe7e21f84b264a3bbd5cbeb0592f007c43e93ec643be9855e06d5cb492e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Computer vision</topic><topic>Deep convolutional neural network (CNN)</topic><topic>Electronic devices</topic><topic>Feature extraction</topic><topic>image pyramid</topic><topic>Knowledge engineering</topic><topic>Laplace equations</topic><topic>Learning</topic><topic>Learning systems</topic><topic>Lightweight</topic><topic>lightweight networks</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Rain</topic><topic>rain removal</topic><topic>residual learning</topic><topic>Task analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Fu, Xueyang</creatorcontrib><creatorcontrib>Liang, Borong</creatorcontrib><creatorcontrib>Huang, Yue</creatorcontrib><creatorcontrib>Ding, Xinghao</creatorcontrib><creatorcontrib>Paisley, John</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Xueyang</au><au>Liang, Borong</au><au>Huang, Yue</au><au>Ding, Xinghao</au><au>Paisley, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lightweight Pyramid Networks for Image Deraining</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>31</volume><issue>6</issue><spage>1794</spage><epage>1807</epage><pages>1794-1807</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Existing deep convolutional neural networks (CNNs) have found major success in image deraining, but at the expense of an enormous number of parameters. This limits their potential applications, e.g., in mobile devices. In this paper, we propose a lightweight pyramid networt (LPNet) for single-image deraining. Instead of designing a complex network structure, we use domain-specific knowledge to simplify the learning process. In particular, we find that by introducing the mature Gaussian-Laplacian image pyramid decomposition technology to the neural network, the learning problem at each pyramid level is greatly simplified and can be handled by a relatively shallow network with few parameters. We adopt recursive and residual network structures to build the proposed LPNet, which has less than 8K parameters while still achieving the state-of-the-art performance on rain removal. We also discuss the potential value of LPNet for other low- and high-level vision tasks.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31329133</pmid><doi>10.1109/TNNLS.2019.2926481</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8036-4071</orcidid><orcidid>https://orcid.org/0000-0002-3036-6754</orcidid><orcidid>https://orcid.org/0000-0003-2288-5287</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2020-06, Vol.31 (6), p.1794-1807
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_miscellaneous_2261974871
source IEEE Xplore (Online service)
subjects Artificial neural networks
Computer vision
Deep convolutional neural network (CNN)
Electronic devices
Feature extraction
image pyramid
Knowledge engineering
Laplace equations
Learning
Learning systems
Lightweight
lightweight networks
Neural networks
Parameters
Rain
rain removal
residual learning
Task analysis
title Lightweight Pyramid Networks for Image Deraining
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A18%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lightweight%20Pyramid%20Networks%20for%20Image%20Deraining&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Fu,%20Xueyang&rft.date=2020-06-01&rft.volume=31&rft.issue=6&rft.spage=1794&rft.epage=1807&rft.pages=1794-1807&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2019.2926481&rft_dat=%3Cproquest_pubme%3E2261974871%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-d6ffebe7e21f84b264a3bbd5cbeb0592f007c43e93ec643be9855e06d5cb492e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2409379980&rft_id=info:pmid/31329133&rft_ieee_id=8767931&rfr_iscdi=true