Loading…
Large-eddy Simulation Of Multiphase Flows In Complex Combustors
Large-eddy simulation (LES) is a promising technique to accurately predict reacting multi-phase flows in practical combustors involving complex physical phenomena of turbulent mixing and combustion dynamics. Our goal in the present work is to develop a computational tool based on particle-tracking s...
Saved in:
Published in: | WIT Transactions on Engineering Sciences 2003-01, Vol.42 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Large-eddy simulation (LES) is a promising technique to accurately predict reacting multi-phase flows in practical combustors involving complex physical phenomena of turbulent mixing and combustion dynamics. Our goal in the present work is to develop a computational tool based on particle-tracking schemes capable of performing hi-fidelity multiphase flow simulations with models to capture liquid-sheet breakup, droplet evaporation, droplet deformation and drag. An Eulerian low-Mach number formulation on arbitrary shaped unstructured grids is used to compute the gaseous phase. The dispersed phase is solved in a Lagrangian framework by tracking a large number of particles on the unstructured grid. The interphase mass, momentum, and energy transport are m |
---|---|
ISSN: | 1746-4471 1743-3533 |
DOI: | 10.2495/MPF030061 |