Loading…

A New Technique to Determine the Phosphate Oxygen Isotope Composition of Freshwater Samples at Low Ambient Phosphate Concentration

The oxygen isotope composition of dissolved inorganic phosphate (δ18Op) offers new opportunities to understand the sources and the fate of phosphorus (P) in freshwater ecosystems. However, current analytical protocols for determining δ18Op are unable to generate reliable data for samples in which am...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2019-09, Vol.53 (17), p.10288-10294
Main Authors: Tcaci, Marina, Barbecot, Florent, Hélie, Jean-Francois, Surridge, Ben W. J, Gooddy, Daren C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a505t-8d28e2540ee4acab85fef0a35df9b43aa51373afcf51e0b946a15d33466696963
cites cdi_FETCH-LOGICAL-a505t-8d28e2540ee4acab85fef0a35df9b43aa51373afcf51e0b946a15d33466696963
container_end_page 10294
container_issue 17
container_start_page 10288
container_title Environmental science & technology
container_volume 53
creator Tcaci, Marina
Barbecot, Florent
Hélie, Jean-Francois
Surridge, Ben W. J
Gooddy, Daren C
description The oxygen isotope composition of dissolved inorganic phosphate (δ18Op) offers new opportunities to understand the sources and the fate of phosphorus (P) in freshwater ecosystems. However, current analytical protocols for determining δ18Op are unable to generate reliable data for samples in which ambient P concentrations are extremely low, precisely the systems in which δ18Op may provide new and important insights into the biogeochemistry of P. In this Article, we report the development, testing and initial application of a new technique that enables δ18Op analysis to be extended into such ecosystems. The twist spinning mode (TSM) protocol described here enables >1000 L of sample with a P concentration
doi_str_mv 10.1021/acs.est.9b00631
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2267782116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2285064683</sourcerecordid><originalsourceid>FETCH-LOGICAL-a505t-8d28e2540ee4acab85fef0a35df9b43aa51373afcf51e0b946a15d33466696963</originalsourceid><addsrcrecordid>eNp1kc1Lw0AQxRdRbP04e5MFL4Kknc1mt8mx1K9CUUEFb2GTTkxKk427W6pX_3I3tIoIModhlt97s8Mj5ITBgEHIhiq3A7RukGQAkrMd0mcihEDEgu2SPgDjQcLlS48cWLsAgJBDvE96nHEpWcL65HNM73BNnzAvm-pthdRpeokOTV01fiiRPpTatqVySO_fP16xoVOrnW6RTnTdalu5SjdUF_TaoC3XnjP0UdXtEi1Vjs70mo7rrMLG_XKa6Cb3L0Z14iOyV6ilxeNtPyTP11dPk9tgdn8znYxngRIgXBDPwxhDEQFipHKVxaLAAhQX8yLJIq6UYHzEVZEXgiFkSSQVE3POIyll4osfkvONb2u0v9S6tK5sjsulalCvbBqGcjSKQ8Y69OwPutAr0_jfeSoWICMZc08NN1RutLUGi7Q1Va3MR8og7eJJfTxpp97G4xWnW99VVuP8h__OwwMXG6BT_uz8z-4L3Q6cDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285064683</pqid></control><display><type>article</type><title>A New Technique to Determine the Phosphate Oxygen Isotope Composition of Freshwater Samples at Low Ambient Phosphate Concentration</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Tcaci, Marina ; Barbecot, Florent ; Hélie, Jean-Francois ; Surridge, Ben W. J ; Gooddy, Daren C</creator><creatorcontrib>Tcaci, Marina ; Barbecot, Florent ; Hélie, Jean-Francois ; Surridge, Ben W. J ; Gooddy, Daren C</creatorcontrib><description>The oxygen isotope composition of dissolved inorganic phosphate (δ18Op) offers new opportunities to understand the sources and the fate of phosphorus (P) in freshwater ecosystems. However, current analytical protocols for determining δ18Op are unable to generate reliable data for samples in which ambient P concentrations are extremely low, precisely the systems in which δ18Op may provide new and important insights into the biogeochemistry of P. In this Article, we report the development, testing and initial application of a new technique that enables δ18Op analysis to be extended into such ecosystems. The twist spinning mode (TSM) protocol described here enables &gt;1000 L of sample with a P concentration &lt;0.016 mg P L–1 to be initially processed within the field in approximately 24 h. Combined with a new freeze-drying method to maximize the yield and minimize the contamination of silver phosphate generated for isotope ratio mass spectrometry, the TSM protocol is able to generate accurate and precise δ18Op data. We evaluated the TSM protocol using synthetic test solutions and subsequently applied the protocol to samples from locations around the Saint Lawrence River in Montreal, Canada. We believe that the novel technique reported here offers the methodological basis for researchers to extend the application of δ18Op into a much wider range of freshwater ecosystems than has been possible to date.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.9b00631</identifier><identifier>PMID: 31366191</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aquatic ecosystems ; Biogeochemistry ; Contamination ; Freeze drying ; Freshwater ecosystems ; Isotope composition ; Isotope ratios ; Isotopes ; Mass spectrometry ; Mass spectroscopy ; Oxygen ; Oxygen isotopes ; Phosphates ; Phosphorus ; Protocol ; Rivers ; Water analysis</subject><ispartof>Environmental science &amp; technology, 2019-09, Vol.53 (17), p.10288-10294</ispartof><rights>Copyright American Chemical Society Sep 3, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a505t-8d28e2540ee4acab85fef0a35df9b43aa51373afcf51e0b946a15d33466696963</citedby><cites>FETCH-LOGICAL-a505t-8d28e2540ee4acab85fef0a35df9b43aa51373afcf51e0b946a15d33466696963</cites><orcidid>0000-0002-3286-3156 ; 0000-0002-6015-1332 ; 0000-0003-2425-1739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31366191$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tcaci, Marina</creatorcontrib><creatorcontrib>Barbecot, Florent</creatorcontrib><creatorcontrib>Hélie, Jean-Francois</creatorcontrib><creatorcontrib>Surridge, Ben W. J</creatorcontrib><creatorcontrib>Gooddy, Daren C</creatorcontrib><title>A New Technique to Determine the Phosphate Oxygen Isotope Composition of Freshwater Samples at Low Ambient Phosphate Concentration</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The oxygen isotope composition of dissolved inorganic phosphate (δ18Op) offers new opportunities to understand the sources and the fate of phosphorus (P) in freshwater ecosystems. However, current analytical protocols for determining δ18Op are unable to generate reliable data for samples in which ambient P concentrations are extremely low, precisely the systems in which δ18Op may provide new and important insights into the biogeochemistry of P. In this Article, we report the development, testing and initial application of a new technique that enables δ18Op analysis to be extended into such ecosystems. The twist spinning mode (TSM) protocol described here enables &gt;1000 L of sample with a P concentration &lt;0.016 mg P L–1 to be initially processed within the field in approximately 24 h. Combined with a new freeze-drying method to maximize the yield and minimize the contamination of silver phosphate generated for isotope ratio mass spectrometry, the TSM protocol is able to generate accurate and precise δ18Op data. We evaluated the TSM protocol using synthetic test solutions and subsequently applied the protocol to samples from locations around the Saint Lawrence River in Montreal, Canada. We believe that the novel technique reported here offers the methodological basis for researchers to extend the application of δ18Op into a much wider range of freshwater ecosystems than has been possible to date.</description><subject>Aquatic ecosystems</subject><subject>Biogeochemistry</subject><subject>Contamination</subject><subject>Freeze drying</subject><subject>Freshwater ecosystems</subject><subject>Isotope composition</subject><subject>Isotope ratios</subject><subject>Isotopes</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Oxygen</subject><subject>Oxygen isotopes</subject><subject>Phosphates</subject><subject>Phosphorus</subject><subject>Protocol</subject><subject>Rivers</subject><subject>Water analysis</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kc1Lw0AQxRdRbP04e5MFL4Kknc1mt8mx1K9CUUEFb2GTTkxKk427W6pX_3I3tIoIModhlt97s8Mj5ITBgEHIhiq3A7RukGQAkrMd0mcihEDEgu2SPgDjQcLlS48cWLsAgJBDvE96nHEpWcL65HNM73BNnzAvm-pthdRpeokOTV01fiiRPpTatqVySO_fP16xoVOrnW6RTnTdalu5SjdUF_TaoC3XnjP0UdXtEi1Vjs70mo7rrMLG_XKa6Cb3L0Z14iOyV6ilxeNtPyTP11dPk9tgdn8znYxngRIgXBDPwxhDEQFipHKVxaLAAhQX8yLJIq6UYHzEVZEXgiFkSSQVE3POIyll4osfkvONb2u0v9S6tK5sjsulalCvbBqGcjSKQ8Y69OwPutAr0_jfeSoWICMZc08NN1RutLUGi7Q1Va3MR8og7eJJfTxpp97G4xWnW99VVuP8h__OwwMXG6BT_uz8z-4L3Q6cDg</recordid><startdate>20190903</startdate><enddate>20190903</enddate><creator>Tcaci, Marina</creator><creator>Barbecot, Florent</creator><creator>Hélie, Jean-Francois</creator><creator>Surridge, Ben W. J</creator><creator>Gooddy, Daren C</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3286-3156</orcidid><orcidid>https://orcid.org/0000-0002-6015-1332</orcidid><orcidid>https://orcid.org/0000-0003-2425-1739</orcidid></search><sort><creationdate>20190903</creationdate><title>A New Technique to Determine the Phosphate Oxygen Isotope Composition of Freshwater Samples at Low Ambient Phosphate Concentration</title><author>Tcaci, Marina ; Barbecot, Florent ; Hélie, Jean-Francois ; Surridge, Ben W. J ; Gooddy, Daren C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a505t-8d28e2540ee4acab85fef0a35df9b43aa51373afcf51e0b946a15d33466696963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aquatic ecosystems</topic><topic>Biogeochemistry</topic><topic>Contamination</topic><topic>Freeze drying</topic><topic>Freshwater ecosystems</topic><topic>Isotope composition</topic><topic>Isotope ratios</topic><topic>Isotopes</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Oxygen</topic><topic>Oxygen isotopes</topic><topic>Phosphates</topic><topic>Phosphorus</topic><topic>Protocol</topic><topic>Rivers</topic><topic>Water analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tcaci, Marina</creatorcontrib><creatorcontrib>Barbecot, Florent</creatorcontrib><creatorcontrib>Hélie, Jean-Francois</creatorcontrib><creatorcontrib>Surridge, Ben W. J</creatorcontrib><creatorcontrib>Gooddy, Daren C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tcaci, Marina</au><au>Barbecot, Florent</au><au>Hélie, Jean-Francois</au><au>Surridge, Ben W. J</au><au>Gooddy, Daren C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Technique to Determine the Phosphate Oxygen Isotope Composition of Freshwater Samples at Low Ambient Phosphate Concentration</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2019-09-03</date><risdate>2019</risdate><volume>53</volume><issue>17</issue><spage>10288</spage><epage>10294</epage><pages>10288-10294</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>The oxygen isotope composition of dissolved inorganic phosphate (δ18Op) offers new opportunities to understand the sources and the fate of phosphorus (P) in freshwater ecosystems. However, current analytical protocols for determining δ18Op are unable to generate reliable data for samples in which ambient P concentrations are extremely low, precisely the systems in which δ18Op may provide new and important insights into the biogeochemistry of P. In this Article, we report the development, testing and initial application of a new technique that enables δ18Op analysis to be extended into such ecosystems. The twist spinning mode (TSM) protocol described here enables &gt;1000 L of sample with a P concentration &lt;0.016 mg P L–1 to be initially processed within the field in approximately 24 h. Combined with a new freeze-drying method to maximize the yield and minimize the contamination of silver phosphate generated for isotope ratio mass spectrometry, the TSM protocol is able to generate accurate and precise δ18Op data. We evaluated the TSM protocol using synthetic test solutions and subsequently applied the protocol to samples from locations around the Saint Lawrence River in Montreal, Canada. We believe that the novel technique reported here offers the methodological basis for researchers to extend the application of δ18Op into a much wider range of freshwater ecosystems than has been possible to date.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31366191</pmid><doi>10.1021/acs.est.9b00631</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3286-3156</orcidid><orcidid>https://orcid.org/0000-0002-6015-1332</orcidid><orcidid>https://orcid.org/0000-0003-2425-1739</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2019-09, Vol.53 (17), p.10288-10294
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_2267782116
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Aquatic ecosystems
Biogeochemistry
Contamination
Freeze drying
Freshwater ecosystems
Isotope composition
Isotope ratios
Isotopes
Mass spectrometry
Mass spectroscopy
Oxygen
Oxygen isotopes
Phosphates
Phosphorus
Protocol
Rivers
Water analysis
title A New Technique to Determine the Phosphate Oxygen Isotope Composition of Freshwater Samples at Low Ambient Phosphate Concentration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A05%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Technique%20to%20Determine%20the%20Phosphate%20Oxygen%20Isotope%20Composition%20of%20Freshwater%20Samples%20at%20Low%20Ambient%20Phosphate%20Concentration&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Tcaci,%20Marina&rft.date=2019-09-03&rft.volume=53&rft.issue=17&rft.spage=10288&rft.epage=10294&rft.pages=10288-10294&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.9b00631&rft_dat=%3Cproquest_cross%3E2285064683%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a505t-8d28e2540ee4acab85fef0a35df9b43aa51373afcf51e0b946a15d33466696963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2285064683&rft_id=info:pmid/31366191&rfr_iscdi=true