Loading…

Chemically Induced Sintering of Nanoparticles

We have observed solid‐state growth of pre‐existing silver nanoparticles (AgNPs) upon exposure to trace (ppb) concentrations of reactive gases at room temperature. The consequent change in localized surface plasmon resonances alters the visible absorbance of dried, printed sensor spots made from ink...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2019-10, Vol.58 (40), p.14193-14196
Main Authors: Li, Zheng, Suslick, Kenneth S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4760-f24412b743bd8653b5033b3e7d3efd9f8e425a727038839ff427e801a797ada63
cites cdi_FETCH-LOGICAL-c4760-f24412b743bd8653b5033b3e7d3efd9f8e425a727038839ff427e801a797ada63
container_end_page 14196
container_issue 40
container_start_page 14193
container_title Angewandte Chemie International Edition
container_volume 58
creator Li, Zheng
Suslick, Kenneth S.
description We have observed solid‐state growth of pre‐existing silver nanoparticles (AgNPs) upon exposure to trace (ppb) concentrations of reactive gases at room temperature. The consequent change in localized surface plasmon resonances alters the visible absorbance of dried, printed sensor spots made from inks of 10 nm‐AgNPs and provides a novel mechanism for trace detection and dosimetry of reactive gases. Colorimetric sensor arrays based on these AgNP inks offer dosimetric identification of acidic and oxidizing gases and other reactive vapors with limits of detection below ppb levels for 1 h exposures. For an array of AgNP inks with various capping agents, a unique color response pattern is observed for each specific analyte. Excellent discrimination among 11 reactive gases was demonstrated using standard chemometric methods. The chemically induced sintering of NPs paves the way for novel solid‐state sensors for the ultrasensitive detection of reactive gases and their application to the monitoring of trace airborne pollutants. Sintering sensors: The solid‐state growth of pre‐existing silver nanoparticles (AgNPs) upon exposure to trace (ppb) concentrations of reactive gases at room temperature is reported. The consequent change in localized surface plasmon resonances alters the visible absorbance of dried, printed sensor spots made from inks of 10 nm AgNPs and provides a novel mechanism for trace detection and dosimetry of reactive gases.
doi_str_mv 10.1002/anie.201908600
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2268305817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2297693372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4760-f24412b743bd8653b5033b3e7d3efd9f8e425a727038839ff427e801a797ada63</originalsourceid><addsrcrecordid>eNqF0D1PwzAQBmALgWgprIwoEgtLiu1LbGesqgKVqjIAs-UkZ3CVjxI3Qv33uGopEgvT3fDcq9NLyDWjY0YpvzeNwzGnLKNKUHpChizlLAYp4TTsCUAsVcoG5ML7VfBKUXFOBsBACg5qSOLpB9auMFW1jeZN2RdYRi-u2WDnmveotdHSNO3adBtXVOgvyZk1lcerwxyRt4fZ6_QpXjw_zqeTRVwkUtDY8iRhPJcJ5KUSKeQpBcgBZQloy8wqTHhqJJcUlILM2oRLVJQZmUlTGgEjcrfPXXftZ49-o2vnC6wq02Dbe825UEBTxWSgt3_oqu27JnwXVCZFBiB5UOO9KrrW-w6tXneuNt1WM6p3RepdkfpYZDi4OcT2eY3lkf80F0C2B1-uwu0_cXqynM9-w78BO2x8kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2297693372</pqid></control><display><type>article</type><title>Chemically Induced Sintering of Nanoparticles</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Li, Zheng ; Suslick, Kenneth S.</creator><creatorcontrib>Li, Zheng ; Suslick, Kenneth S.</creatorcontrib><description>We have observed solid‐state growth of pre‐existing silver nanoparticles (AgNPs) upon exposure to trace (ppb) concentrations of reactive gases at room temperature. The consequent change in localized surface plasmon resonances alters the visible absorbance of dried, printed sensor spots made from inks of 10 nm‐AgNPs and provides a novel mechanism for trace detection and dosimetry of reactive gases. Colorimetric sensor arrays based on these AgNP inks offer dosimetric identification of acidic and oxidizing gases and other reactive vapors with limits of detection below ppb levels for 1 h exposures. For an array of AgNP inks with various capping agents, a unique color response pattern is observed for each specific analyte. Excellent discrimination among 11 reactive gases was demonstrated using standard chemometric methods. The chemically induced sintering of NPs paves the way for novel solid‐state sensors for the ultrasensitive detection of reactive gases and their application to the monitoring of trace airborne pollutants. Sintering sensors: The solid‐state growth of pre‐existing silver nanoparticles (AgNPs) upon exposure to trace (ppb) concentrations of reactive gases at room temperature is reported. The consequent change in localized surface plasmon resonances alters the visible absorbance of dried, printed sensor spots made from inks of 10 nm AgNPs and provides a novel mechanism for trace detection and dosimetry of reactive gases.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201908600</identifier><identifier>PMID: 31376238</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acidic oxides ; Air pollution ; colorimetric sensor arrays ; Colorimetry ; Dosimeters ; Dosimetry ; Environmental monitoring ; Exposure ; Gases ; gas–solid reaction ; Inks ; nanoparticle sensors ; Nanoparticles ; Organic chemistry ; Oxidation ; Ozone ; Pollutants ; Pollution monitoring ; Production methods ; Sensor arrays ; Silver ; Sintering ; ultrasensitive dosimetry ; Vapors</subject><ispartof>Angewandte Chemie International Edition, 2019-10, Vol.58 (40), p.14193-14196</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4760-f24412b743bd8653b5033b3e7d3efd9f8e425a727038839ff427e801a797ada63</citedby><cites>FETCH-LOGICAL-c4760-f24412b743bd8653b5033b3e7d3efd9f8e425a727038839ff427e801a797ada63</cites><orcidid>0000-0001-5422-0701</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31376238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Suslick, Kenneth S.</creatorcontrib><title>Chemically Induced Sintering of Nanoparticles</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>We have observed solid‐state growth of pre‐existing silver nanoparticles (AgNPs) upon exposure to trace (ppb) concentrations of reactive gases at room temperature. The consequent change in localized surface plasmon resonances alters the visible absorbance of dried, printed sensor spots made from inks of 10 nm‐AgNPs and provides a novel mechanism for trace detection and dosimetry of reactive gases. Colorimetric sensor arrays based on these AgNP inks offer dosimetric identification of acidic and oxidizing gases and other reactive vapors with limits of detection below ppb levels for 1 h exposures. For an array of AgNP inks with various capping agents, a unique color response pattern is observed for each specific analyte. Excellent discrimination among 11 reactive gases was demonstrated using standard chemometric methods. The chemically induced sintering of NPs paves the way for novel solid‐state sensors for the ultrasensitive detection of reactive gases and their application to the monitoring of trace airborne pollutants. Sintering sensors: The solid‐state growth of pre‐existing silver nanoparticles (AgNPs) upon exposure to trace (ppb) concentrations of reactive gases at room temperature is reported. The consequent change in localized surface plasmon resonances alters the visible absorbance of dried, printed sensor spots made from inks of 10 nm AgNPs and provides a novel mechanism for trace detection and dosimetry of reactive gases.</description><subject>Acidic oxides</subject><subject>Air pollution</subject><subject>colorimetric sensor arrays</subject><subject>Colorimetry</subject><subject>Dosimeters</subject><subject>Dosimetry</subject><subject>Environmental monitoring</subject><subject>Exposure</subject><subject>Gases</subject><subject>gas–solid reaction</subject><subject>Inks</subject><subject>nanoparticle sensors</subject><subject>Nanoparticles</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Ozone</subject><subject>Pollutants</subject><subject>Pollution monitoring</subject><subject>Production methods</subject><subject>Sensor arrays</subject><subject>Silver</subject><subject>Sintering</subject><subject>ultrasensitive dosimetry</subject><subject>Vapors</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqF0D1PwzAQBmALgWgprIwoEgtLiu1LbGesqgKVqjIAs-UkZ3CVjxI3Qv33uGopEgvT3fDcq9NLyDWjY0YpvzeNwzGnLKNKUHpChizlLAYp4TTsCUAsVcoG5ML7VfBKUXFOBsBACg5qSOLpB9auMFW1jeZN2RdYRi-u2WDnmveotdHSNO3adBtXVOgvyZk1lcerwxyRt4fZ6_QpXjw_zqeTRVwkUtDY8iRhPJcJ5KUSKeQpBcgBZQloy8wqTHhqJJcUlILM2oRLVJQZmUlTGgEjcrfPXXftZ49-o2vnC6wq02Dbe825UEBTxWSgt3_oqu27JnwXVCZFBiB5UOO9KrrW-w6tXneuNt1WM6p3RepdkfpYZDi4OcT2eY3lkf80F0C2B1-uwu0_cXqynM9-w78BO2x8kw</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Li, Zheng</creator><creator>Suslick, Kenneth S.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5422-0701</orcidid></search><sort><creationdate>20191001</creationdate><title>Chemically Induced Sintering of Nanoparticles</title><author>Li, Zheng ; Suslick, Kenneth S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4760-f24412b743bd8653b5033b3e7d3efd9f8e425a727038839ff427e801a797ada63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acidic oxides</topic><topic>Air pollution</topic><topic>colorimetric sensor arrays</topic><topic>Colorimetry</topic><topic>Dosimeters</topic><topic>Dosimetry</topic><topic>Environmental monitoring</topic><topic>Exposure</topic><topic>Gases</topic><topic>gas–solid reaction</topic><topic>Inks</topic><topic>nanoparticle sensors</topic><topic>Nanoparticles</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Ozone</topic><topic>Pollutants</topic><topic>Pollution monitoring</topic><topic>Production methods</topic><topic>Sensor arrays</topic><topic>Silver</topic><topic>Sintering</topic><topic>ultrasensitive dosimetry</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Suslick, Kenneth S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zheng</au><au>Suslick, Kenneth S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemically Induced Sintering of Nanoparticles</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>58</volume><issue>40</issue><spage>14193</spage><epage>14196</epage><pages>14193-14196</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>We have observed solid‐state growth of pre‐existing silver nanoparticles (AgNPs) upon exposure to trace (ppb) concentrations of reactive gases at room temperature. The consequent change in localized surface plasmon resonances alters the visible absorbance of dried, printed sensor spots made from inks of 10 nm‐AgNPs and provides a novel mechanism for trace detection and dosimetry of reactive gases. Colorimetric sensor arrays based on these AgNP inks offer dosimetric identification of acidic and oxidizing gases and other reactive vapors with limits of detection below ppb levels for 1 h exposures. For an array of AgNP inks with various capping agents, a unique color response pattern is observed for each specific analyte. Excellent discrimination among 11 reactive gases was demonstrated using standard chemometric methods. The chemically induced sintering of NPs paves the way for novel solid‐state sensors for the ultrasensitive detection of reactive gases and their application to the monitoring of trace airborne pollutants. Sintering sensors: The solid‐state growth of pre‐existing silver nanoparticles (AgNPs) upon exposure to trace (ppb) concentrations of reactive gases at room temperature is reported. The consequent change in localized surface plasmon resonances alters the visible absorbance of dried, printed sensor spots made from inks of 10 nm AgNPs and provides a novel mechanism for trace detection and dosimetry of reactive gases.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31376238</pmid><doi>10.1002/anie.201908600</doi><tpages>4</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-5422-0701</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2019-10, Vol.58 (40), p.14193-14196
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2268305817
source Wiley-Blackwell Read & Publish Collection
subjects Acidic oxides
Air pollution
colorimetric sensor arrays
Colorimetry
Dosimeters
Dosimetry
Environmental monitoring
Exposure
Gases
gas–solid reaction
Inks
nanoparticle sensors
Nanoparticles
Organic chemistry
Oxidation
Ozone
Pollutants
Pollution monitoring
Production methods
Sensor arrays
Silver
Sintering
ultrasensitive dosimetry
Vapors
title Chemically Induced Sintering of Nanoparticles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemically%20Induced%20Sintering%20of%20Nanoparticles&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Li,%20Zheng&rft.date=2019-10-01&rft.volume=58&rft.issue=40&rft.spage=14193&rft.epage=14196&rft.pages=14193-14196&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201908600&rft_dat=%3Cproquest_cross%3E2297693372%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4760-f24412b743bd8653b5033b3e7d3efd9f8e425a727038839ff427e801a797ada63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2297693372&rft_id=info:pmid/31376238&rfr_iscdi=true