Loading…

Strong plasmonic fluorescence enhancement of individual plant light-harvesting complexes

Plasmonic coupling of metallic nanoparticles and adjacent pigments can dramatically increase the brightness of the pigments due to the enhanced local electric field. Here, we demonstrate that the fluorescence brightness of a single plant light-harvesting complex (LHCII) can be significantly enhanced...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2019-08, Vol.11 (32), p.15139-15146
Main Authors: Kyeyune, Farooq, Botha, Joshua L, van Heerden, Bertus, Malý, Pavel, van Grondelle, Rienk, Diale, Mmantsae, Krüger, Tjaart P. J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c399t-99b347a4dc6d7d0ccc95c956aa53e7c4c89f55d82436786ab9ab69d9d05320d13
cites cdi_FETCH-LOGICAL-c399t-99b347a4dc6d7d0ccc95c956aa53e7c4c89f55d82436786ab9ab69d9d05320d13
container_end_page 15146
container_issue 32
container_start_page 15139
container_title Nanoscale
container_volume 11
creator Kyeyune, Farooq
Botha, Joshua L
van Heerden, Bertus
Malý, Pavel
van Grondelle, Rienk
Diale, Mmantsae
Krüger, Tjaart P. J
description Plasmonic coupling of metallic nanoparticles and adjacent pigments can dramatically increase the brightness of the pigments due to the enhanced local electric field. Here, we demonstrate that the fluorescence brightness of a single plant light-harvesting complex (LHCII) can be significantly enhanced when coupled to a gold nanorod (AuNR). The AuNRs utilized in this study were prepared via chemical reactions, and the hybrid system was constructed using a simple and economical spin-assisted layer-by-layer technique. Enhancement of fluorescence brightness of up to 240-fold was observed, accompanied by a 109-fold decrease in the average (amplitude-weighted) fluorescence lifetime from approximately 3.5 ns down to 32 ps, corresponding to an excitation enhancement of 63-fold and emission enhancement of up to 3.8-fold. This large enhancement is due to the strong spectral overlap of the longitudinal localized surface plasmon resonance of the utilized AuNRs and the absorption or emission bands of LHCII. This study provides an inexpensive strategy to explore the fluorescence dynamics of weakly emitting photosynthetic light-harvesting complexes at the single molecule level. Plasmon-enhanced fluorescence for detection of weakly emitting individual photosynthetic pigment-protein complexes.
doi_str_mv 10.1039/c9nr04558a
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2268311064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2268311064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-99b347a4dc6d7d0ccc95c956aa53e7c4c89f55d82436786ab9ab69d9d05320d13</originalsourceid><addsrcrecordid>eNp9kc9LwzAcxYMobk4v3pWKFxGqSZOmzXEMf4Eo-AO8lTRJt4w2qUk79L83c3OCByHwDXmfvDxeADhE8AJBzC4FMw6SNM35FhgmkMAY4yzZ3uwpGYA97-cQUoYp3gUDjAJAEzwEb8-ds2YatTX3jTVaRFXdW6e8UEaoSJkZD7NRpotsFWkj9ULLntfLC-Gs1tNZF8-4Wyjf6eAjbNPW6kP5fbBT8dqrg_Ucgdfrq5fJbXz_eHM3Gd_HAjPWxYyVmGScSEFlJqEQgqVhUc5TrDJBRM6qNJV5QjDNcspLxkvKJJMwxQmUCI_A2cq3dfa9DymKRofwdYinbO-LJKE5RghSEtDTP-jc9s6EdIHKMMrCCzBQ5ytKOOu9U1XROt1w91kgWCz7Libs4em773GAj9eWfdkouUF_Cg7A0QpwXmzU3w8L-sl_etHKCn8BxaeRAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2273176780</pqid></control><display><type>article</type><title>Strong plasmonic fluorescence enhancement of individual plant light-harvesting complexes</title><source>Royal Society of Chemistry Journals</source><creator>Kyeyune, Farooq ; Botha, Joshua L ; van Heerden, Bertus ; Malý, Pavel ; van Grondelle, Rienk ; Diale, Mmantsae ; Krüger, Tjaart P. J</creator><creatorcontrib>Kyeyune, Farooq ; Botha, Joshua L ; van Heerden, Bertus ; Malý, Pavel ; van Grondelle, Rienk ; Diale, Mmantsae ; Krüger, Tjaart P. J</creatorcontrib><description>Plasmonic coupling of metallic nanoparticles and adjacent pigments can dramatically increase the brightness of the pigments due to the enhanced local electric field. Here, we demonstrate that the fluorescence brightness of a single plant light-harvesting complex (LHCII) can be significantly enhanced when coupled to a gold nanorod (AuNR). The AuNRs utilized in this study were prepared via chemical reactions, and the hybrid system was constructed using a simple and economical spin-assisted layer-by-layer technique. Enhancement of fluorescence brightness of up to 240-fold was observed, accompanied by a 109-fold decrease in the average (amplitude-weighted) fluorescence lifetime from approximately 3.5 ns down to 32 ps, corresponding to an excitation enhancement of 63-fold and emission enhancement of up to 3.8-fold. This large enhancement is due to the strong spectral overlap of the longitudinal localized surface plasmon resonance of the utilized AuNRs and the absorption or emission bands of LHCII. This study provides an inexpensive strategy to explore the fluorescence dynamics of weakly emitting photosynthetic light-harvesting complexes at the single molecule level. Plasmon-enhanced fluorescence for detection of weakly emitting individual photosynthetic pigment-protein complexes.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c9nr04558a</identifier><identifier>PMID: 31372623</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Brightness ; Chemical reactions ; Electric fields ; Emission analysis ; Fluorescence ; Gold ; Gold - chemistry ; Hybrid systems ; Immobilized Proteins - chemistry ; Immobilized Proteins - metabolism ; Light-Harvesting Protein Complexes - chemistry ; Light-Harvesting Protein Complexes - metabolism ; Longitude ; Microscopy, Electron, Transmission ; Nanoparticles ; Nanorods ; Nanotubes - chemistry ; Organic chemistry ; Photosynthesis ; Pigments ; Plant Proteins - chemistry ; Plant Proteins - metabolism ; Plants - metabolism ; Spectrophotometry ; Surface Plasmon Resonance</subject><ispartof>Nanoscale, 2019-08, Vol.11 (32), p.15139-15146</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-99b347a4dc6d7d0ccc95c956aa53e7c4c89f55d82436786ab9ab69d9d05320d13</citedby><cites>FETCH-LOGICAL-c399t-99b347a4dc6d7d0ccc95c956aa53e7c4c89f55d82436786ab9ab69d9d05320d13</cites><orcidid>0000-0002-4268-5517 ; 0000-0002-9033-9854 ; 0000-0002-6769-0697 ; 0000-0002-0801-6512 ; 0000-0001-9244-9718</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31372623$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kyeyune, Farooq</creatorcontrib><creatorcontrib>Botha, Joshua L</creatorcontrib><creatorcontrib>van Heerden, Bertus</creatorcontrib><creatorcontrib>Malý, Pavel</creatorcontrib><creatorcontrib>van Grondelle, Rienk</creatorcontrib><creatorcontrib>Diale, Mmantsae</creatorcontrib><creatorcontrib>Krüger, Tjaart P. J</creatorcontrib><title>Strong plasmonic fluorescence enhancement of individual plant light-harvesting complexes</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Plasmonic coupling of metallic nanoparticles and adjacent pigments can dramatically increase the brightness of the pigments due to the enhanced local electric field. Here, we demonstrate that the fluorescence brightness of a single plant light-harvesting complex (LHCII) can be significantly enhanced when coupled to a gold nanorod (AuNR). The AuNRs utilized in this study were prepared via chemical reactions, and the hybrid system was constructed using a simple and economical spin-assisted layer-by-layer technique. Enhancement of fluorescence brightness of up to 240-fold was observed, accompanied by a 109-fold decrease in the average (amplitude-weighted) fluorescence lifetime from approximately 3.5 ns down to 32 ps, corresponding to an excitation enhancement of 63-fold and emission enhancement of up to 3.8-fold. This large enhancement is due to the strong spectral overlap of the longitudinal localized surface plasmon resonance of the utilized AuNRs and the absorption or emission bands of LHCII. This study provides an inexpensive strategy to explore the fluorescence dynamics of weakly emitting photosynthetic light-harvesting complexes at the single molecule level. Plasmon-enhanced fluorescence for detection of weakly emitting individual photosynthetic pigment-protein complexes.</description><subject>Brightness</subject><subject>Chemical reactions</subject><subject>Electric fields</subject><subject>Emission analysis</subject><subject>Fluorescence</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Hybrid systems</subject><subject>Immobilized Proteins - chemistry</subject><subject>Immobilized Proteins - metabolism</subject><subject>Light-Harvesting Protein Complexes - chemistry</subject><subject>Light-Harvesting Protein Complexes - metabolism</subject><subject>Longitude</subject><subject>Microscopy, Electron, Transmission</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Nanotubes - chemistry</subject><subject>Organic chemistry</subject><subject>Photosynthesis</subject><subject>Pigments</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - metabolism</subject><subject>Plants - metabolism</subject><subject>Spectrophotometry</subject><subject>Surface Plasmon Resonance</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc9LwzAcxYMobk4v3pWKFxGqSZOmzXEMf4Eo-AO8lTRJt4w2qUk79L83c3OCByHwDXmfvDxeADhE8AJBzC4FMw6SNM35FhgmkMAY4yzZ3uwpGYA97-cQUoYp3gUDjAJAEzwEb8-ds2YatTX3jTVaRFXdW6e8UEaoSJkZD7NRpotsFWkj9ULLntfLC-Gs1tNZF8-4Wyjf6eAjbNPW6kP5fbBT8dqrg_Ucgdfrq5fJbXz_eHM3Gd_HAjPWxYyVmGScSEFlJqEQgqVhUc5TrDJBRM6qNJV5QjDNcspLxkvKJJMwxQmUCI_A2cq3dfa9DymKRofwdYinbO-LJKE5RghSEtDTP-jc9s6EdIHKMMrCCzBQ5ytKOOu9U1XROt1w91kgWCz7Libs4em773GAj9eWfdkouUF_Cg7A0QpwXmzU3w8L-sl_etHKCn8BxaeRAg</recordid><startdate>20190815</startdate><enddate>20190815</enddate><creator>Kyeyune, Farooq</creator><creator>Botha, Joshua L</creator><creator>van Heerden, Bertus</creator><creator>Malý, Pavel</creator><creator>van Grondelle, Rienk</creator><creator>Diale, Mmantsae</creator><creator>Krüger, Tjaart P. J</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4268-5517</orcidid><orcidid>https://orcid.org/0000-0002-9033-9854</orcidid><orcidid>https://orcid.org/0000-0002-6769-0697</orcidid><orcidid>https://orcid.org/0000-0002-0801-6512</orcidid><orcidid>https://orcid.org/0000-0001-9244-9718</orcidid></search><sort><creationdate>20190815</creationdate><title>Strong plasmonic fluorescence enhancement of individual plant light-harvesting complexes</title><author>Kyeyune, Farooq ; Botha, Joshua L ; van Heerden, Bertus ; Malý, Pavel ; van Grondelle, Rienk ; Diale, Mmantsae ; Krüger, Tjaart P. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-99b347a4dc6d7d0ccc95c956aa53e7c4c89f55d82436786ab9ab69d9d05320d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Brightness</topic><topic>Chemical reactions</topic><topic>Electric fields</topic><topic>Emission analysis</topic><topic>Fluorescence</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Hybrid systems</topic><topic>Immobilized Proteins - chemistry</topic><topic>Immobilized Proteins - metabolism</topic><topic>Light-Harvesting Protein Complexes - chemistry</topic><topic>Light-Harvesting Protein Complexes - metabolism</topic><topic>Longitude</topic><topic>Microscopy, Electron, Transmission</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Nanotubes - chemistry</topic><topic>Organic chemistry</topic><topic>Photosynthesis</topic><topic>Pigments</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - metabolism</topic><topic>Plants - metabolism</topic><topic>Spectrophotometry</topic><topic>Surface Plasmon Resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kyeyune, Farooq</creatorcontrib><creatorcontrib>Botha, Joshua L</creatorcontrib><creatorcontrib>van Heerden, Bertus</creatorcontrib><creatorcontrib>Malý, Pavel</creatorcontrib><creatorcontrib>van Grondelle, Rienk</creatorcontrib><creatorcontrib>Diale, Mmantsae</creatorcontrib><creatorcontrib>Krüger, Tjaart P. J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kyeyune, Farooq</au><au>Botha, Joshua L</au><au>van Heerden, Bertus</au><au>Malý, Pavel</au><au>van Grondelle, Rienk</au><au>Diale, Mmantsae</au><au>Krüger, Tjaart P. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong plasmonic fluorescence enhancement of individual plant light-harvesting complexes</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2019-08-15</date><risdate>2019</risdate><volume>11</volume><issue>32</issue><spage>15139</spage><epage>15146</epage><pages>15139-15146</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Plasmonic coupling of metallic nanoparticles and adjacent pigments can dramatically increase the brightness of the pigments due to the enhanced local electric field. Here, we demonstrate that the fluorescence brightness of a single plant light-harvesting complex (LHCII) can be significantly enhanced when coupled to a gold nanorod (AuNR). The AuNRs utilized in this study were prepared via chemical reactions, and the hybrid system was constructed using a simple and economical spin-assisted layer-by-layer technique. Enhancement of fluorescence brightness of up to 240-fold was observed, accompanied by a 109-fold decrease in the average (amplitude-weighted) fluorescence lifetime from approximately 3.5 ns down to 32 ps, corresponding to an excitation enhancement of 63-fold and emission enhancement of up to 3.8-fold. This large enhancement is due to the strong spectral overlap of the longitudinal localized surface plasmon resonance of the utilized AuNRs and the absorption or emission bands of LHCII. This study provides an inexpensive strategy to explore the fluorescence dynamics of weakly emitting photosynthetic light-harvesting complexes at the single molecule level. Plasmon-enhanced fluorescence for detection of weakly emitting individual photosynthetic pigment-protein complexes.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31372623</pmid><doi>10.1039/c9nr04558a</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4268-5517</orcidid><orcidid>https://orcid.org/0000-0002-9033-9854</orcidid><orcidid>https://orcid.org/0000-0002-6769-0697</orcidid><orcidid>https://orcid.org/0000-0002-0801-6512</orcidid><orcidid>https://orcid.org/0000-0001-9244-9718</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2019-08, Vol.11 (32), p.15139-15146
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2268311064
source Royal Society of Chemistry Journals
subjects Brightness
Chemical reactions
Electric fields
Emission analysis
Fluorescence
Gold
Gold - chemistry
Hybrid systems
Immobilized Proteins - chemistry
Immobilized Proteins - metabolism
Light-Harvesting Protein Complexes - chemistry
Light-Harvesting Protein Complexes - metabolism
Longitude
Microscopy, Electron, Transmission
Nanoparticles
Nanorods
Nanotubes - chemistry
Organic chemistry
Photosynthesis
Pigments
Plant Proteins - chemistry
Plant Proteins - metabolism
Plants - metabolism
Spectrophotometry
Surface Plasmon Resonance
title Strong plasmonic fluorescence enhancement of individual plant light-harvesting complexes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A29%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20plasmonic%20fluorescence%20enhancement%20of%20individual%20plant%20light-harvesting%20complexes&rft.jtitle=Nanoscale&rft.au=Kyeyune,%20Farooq&rft.date=2019-08-15&rft.volume=11&rft.issue=32&rft.spage=15139&rft.epage=15146&rft.pages=15139-15146&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c9nr04558a&rft_dat=%3Cproquest_pubme%3E2268311064%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-99b347a4dc6d7d0ccc95c956aa53e7c4c89f55d82436786ab9ab69d9d05320d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2273176780&rft_id=info:pmid/31372623&rfr_iscdi=true