Loading…
Strong plasmonic fluorescence enhancement of individual plant light-harvesting complexes
Plasmonic coupling of metallic nanoparticles and adjacent pigments can dramatically increase the brightness of the pigments due to the enhanced local electric field. Here, we demonstrate that the fluorescence brightness of a single plant light-harvesting complex (LHCII) can be significantly enhanced...
Saved in:
Published in: | Nanoscale 2019-08, Vol.11 (32), p.15139-15146 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c399t-99b347a4dc6d7d0ccc95c956aa53e7c4c89f55d82436786ab9ab69d9d05320d13 |
---|---|
cites | cdi_FETCH-LOGICAL-c399t-99b347a4dc6d7d0ccc95c956aa53e7c4c89f55d82436786ab9ab69d9d05320d13 |
container_end_page | 15146 |
container_issue | 32 |
container_start_page | 15139 |
container_title | Nanoscale |
container_volume | 11 |
creator | Kyeyune, Farooq Botha, Joshua L van Heerden, Bertus Malý, Pavel van Grondelle, Rienk Diale, Mmantsae Krüger, Tjaart P. J |
description | Plasmonic coupling of metallic nanoparticles and adjacent pigments can dramatically increase the brightness of the pigments due to the enhanced local electric field. Here, we demonstrate that the fluorescence brightness of a single plant light-harvesting complex (LHCII) can be significantly enhanced when coupled to a gold nanorod (AuNR). The AuNRs utilized in this study were prepared
via
chemical reactions, and the hybrid system was constructed using a simple and economical spin-assisted layer-by-layer technique. Enhancement of fluorescence brightness of up to 240-fold was observed, accompanied by a 109-fold decrease in the average (amplitude-weighted) fluorescence lifetime from approximately 3.5 ns down to 32 ps, corresponding to an excitation enhancement of 63-fold and emission enhancement of up to 3.8-fold. This large enhancement is due to the strong spectral overlap of the longitudinal localized surface plasmon resonance of the utilized AuNRs and the absorption or emission bands of LHCII. This study provides an inexpensive strategy to explore the fluorescence dynamics of weakly emitting photosynthetic light-harvesting complexes at the single molecule level.
Plasmon-enhanced fluorescence for detection of weakly emitting individual photosynthetic pigment-protein complexes. |
doi_str_mv | 10.1039/c9nr04558a |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2268311064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2268311064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-99b347a4dc6d7d0ccc95c956aa53e7c4c89f55d82436786ab9ab69d9d05320d13</originalsourceid><addsrcrecordid>eNp9kc9LwzAcxYMobk4v3pWKFxGqSZOmzXEMf4Eo-AO8lTRJt4w2qUk79L83c3OCByHwDXmfvDxeADhE8AJBzC4FMw6SNM35FhgmkMAY4yzZ3uwpGYA97-cQUoYp3gUDjAJAEzwEb8-ds2YatTX3jTVaRFXdW6e8UEaoSJkZD7NRpotsFWkj9ULLntfLC-Gs1tNZF8-4Wyjf6eAjbNPW6kP5fbBT8dqrg_Ucgdfrq5fJbXz_eHM3Gd_HAjPWxYyVmGScSEFlJqEQgqVhUc5TrDJBRM6qNJV5QjDNcspLxkvKJJMwxQmUCI_A2cq3dfa9DymKRofwdYinbO-LJKE5RghSEtDTP-jc9s6EdIHKMMrCCzBQ5ytKOOu9U1XROt1w91kgWCz7Libs4em773GAj9eWfdkouUF_Cg7A0QpwXmzU3w8L-sl_etHKCn8BxaeRAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2273176780</pqid></control><display><type>article</type><title>Strong plasmonic fluorescence enhancement of individual plant light-harvesting complexes</title><source>Royal Society of Chemistry Journals</source><creator>Kyeyune, Farooq ; Botha, Joshua L ; van Heerden, Bertus ; Malý, Pavel ; van Grondelle, Rienk ; Diale, Mmantsae ; Krüger, Tjaart P. J</creator><creatorcontrib>Kyeyune, Farooq ; Botha, Joshua L ; van Heerden, Bertus ; Malý, Pavel ; van Grondelle, Rienk ; Diale, Mmantsae ; Krüger, Tjaart P. J</creatorcontrib><description>Plasmonic coupling of metallic nanoparticles and adjacent pigments can dramatically increase the brightness of the pigments due to the enhanced local electric field. Here, we demonstrate that the fluorescence brightness of a single plant light-harvesting complex (LHCII) can be significantly enhanced when coupled to a gold nanorod (AuNR). The AuNRs utilized in this study were prepared
via
chemical reactions, and the hybrid system was constructed using a simple and economical spin-assisted layer-by-layer technique. Enhancement of fluorescence brightness of up to 240-fold was observed, accompanied by a 109-fold decrease in the average (amplitude-weighted) fluorescence lifetime from approximately 3.5 ns down to 32 ps, corresponding to an excitation enhancement of 63-fold and emission enhancement of up to 3.8-fold. This large enhancement is due to the strong spectral overlap of the longitudinal localized surface plasmon resonance of the utilized AuNRs and the absorption or emission bands of LHCII. This study provides an inexpensive strategy to explore the fluorescence dynamics of weakly emitting photosynthetic light-harvesting complexes at the single molecule level.
Plasmon-enhanced fluorescence for detection of weakly emitting individual photosynthetic pigment-protein complexes.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c9nr04558a</identifier><identifier>PMID: 31372623</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Brightness ; Chemical reactions ; Electric fields ; Emission analysis ; Fluorescence ; Gold ; Gold - chemistry ; Hybrid systems ; Immobilized Proteins - chemistry ; Immobilized Proteins - metabolism ; Light-Harvesting Protein Complexes - chemistry ; Light-Harvesting Protein Complexes - metabolism ; Longitude ; Microscopy, Electron, Transmission ; Nanoparticles ; Nanorods ; Nanotubes - chemistry ; Organic chemistry ; Photosynthesis ; Pigments ; Plant Proteins - chemistry ; Plant Proteins - metabolism ; Plants - metabolism ; Spectrophotometry ; Surface Plasmon Resonance</subject><ispartof>Nanoscale, 2019-08, Vol.11 (32), p.15139-15146</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-99b347a4dc6d7d0ccc95c956aa53e7c4c89f55d82436786ab9ab69d9d05320d13</citedby><cites>FETCH-LOGICAL-c399t-99b347a4dc6d7d0ccc95c956aa53e7c4c89f55d82436786ab9ab69d9d05320d13</cites><orcidid>0000-0002-4268-5517 ; 0000-0002-9033-9854 ; 0000-0002-6769-0697 ; 0000-0002-0801-6512 ; 0000-0001-9244-9718</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31372623$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kyeyune, Farooq</creatorcontrib><creatorcontrib>Botha, Joshua L</creatorcontrib><creatorcontrib>van Heerden, Bertus</creatorcontrib><creatorcontrib>Malý, Pavel</creatorcontrib><creatorcontrib>van Grondelle, Rienk</creatorcontrib><creatorcontrib>Diale, Mmantsae</creatorcontrib><creatorcontrib>Krüger, Tjaart P. J</creatorcontrib><title>Strong plasmonic fluorescence enhancement of individual plant light-harvesting complexes</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Plasmonic coupling of metallic nanoparticles and adjacent pigments can dramatically increase the brightness of the pigments due to the enhanced local electric field. Here, we demonstrate that the fluorescence brightness of a single plant light-harvesting complex (LHCII) can be significantly enhanced when coupled to a gold nanorod (AuNR). The AuNRs utilized in this study were prepared
via
chemical reactions, and the hybrid system was constructed using a simple and economical spin-assisted layer-by-layer technique. Enhancement of fluorescence brightness of up to 240-fold was observed, accompanied by a 109-fold decrease in the average (amplitude-weighted) fluorescence lifetime from approximately 3.5 ns down to 32 ps, corresponding to an excitation enhancement of 63-fold and emission enhancement of up to 3.8-fold. This large enhancement is due to the strong spectral overlap of the longitudinal localized surface plasmon resonance of the utilized AuNRs and the absorption or emission bands of LHCII. This study provides an inexpensive strategy to explore the fluorescence dynamics of weakly emitting photosynthetic light-harvesting complexes at the single molecule level.
Plasmon-enhanced fluorescence for detection of weakly emitting individual photosynthetic pigment-protein complexes.</description><subject>Brightness</subject><subject>Chemical reactions</subject><subject>Electric fields</subject><subject>Emission analysis</subject><subject>Fluorescence</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Hybrid systems</subject><subject>Immobilized Proteins - chemistry</subject><subject>Immobilized Proteins - metabolism</subject><subject>Light-Harvesting Protein Complexes - chemistry</subject><subject>Light-Harvesting Protein Complexes - metabolism</subject><subject>Longitude</subject><subject>Microscopy, Electron, Transmission</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Nanotubes - chemistry</subject><subject>Organic chemistry</subject><subject>Photosynthesis</subject><subject>Pigments</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - metabolism</subject><subject>Plants - metabolism</subject><subject>Spectrophotometry</subject><subject>Surface Plasmon Resonance</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc9LwzAcxYMobk4v3pWKFxGqSZOmzXEMf4Eo-AO8lTRJt4w2qUk79L83c3OCByHwDXmfvDxeADhE8AJBzC4FMw6SNM35FhgmkMAY4yzZ3uwpGYA97-cQUoYp3gUDjAJAEzwEb8-ds2YatTX3jTVaRFXdW6e8UEaoSJkZD7NRpotsFWkj9ULLntfLC-Gs1tNZF8-4Wyjf6eAjbNPW6kP5fbBT8dqrg_Ucgdfrq5fJbXz_eHM3Gd_HAjPWxYyVmGScSEFlJqEQgqVhUc5TrDJBRM6qNJV5QjDNcspLxkvKJJMwxQmUCI_A2cq3dfa9DymKRofwdYinbO-LJKE5RghSEtDTP-jc9s6EdIHKMMrCCzBQ5ytKOOu9U1XROt1w91kgWCz7Libs4em773GAj9eWfdkouUF_Cg7A0QpwXmzU3w8L-sl_etHKCn8BxaeRAg</recordid><startdate>20190815</startdate><enddate>20190815</enddate><creator>Kyeyune, Farooq</creator><creator>Botha, Joshua L</creator><creator>van Heerden, Bertus</creator><creator>Malý, Pavel</creator><creator>van Grondelle, Rienk</creator><creator>Diale, Mmantsae</creator><creator>Krüger, Tjaart P. J</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4268-5517</orcidid><orcidid>https://orcid.org/0000-0002-9033-9854</orcidid><orcidid>https://orcid.org/0000-0002-6769-0697</orcidid><orcidid>https://orcid.org/0000-0002-0801-6512</orcidid><orcidid>https://orcid.org/0000-0001-9244-9718</orcidid></search><sort><creationdate>20190815</creationdate><title>Strong plasmonic fluorescence enhancement of individual plant light-harvesting complexes</title><author>Kyeyune, Farooq ; Botha, Joshua L ; van Heerden, Bertus ; Malý, Pavel ; van Grondelle, Rienk ; Diale, Mmantsae ; Krüger, Tjaart P. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-99b347a4dc6d7d0ccc95c956aa53e7c4c89f55d82436786ab9ab69d9d05320d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Brightness</topic><topic>Chemical reactions</topic><topic>Electric fields</topic><topic>Emission analysis</topic><topic>Fluorescence</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Hybrid systems</topic><topic>Immobilized Proteins - chemistry</topic><topic>Immobilized Proteins - metabolism</topic><topic>Light-Harvesting Protein Complexes - chemistry</topic><topic>Light-Harvesting Protein Complexes - metabolism</topic><topic>Longitude</topic><topic>Microscopy, Electron, Transmission</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Nanotubes - chemistry</topic><topic>Organic chemistry</topic><topic>Photosynthesis</topic><topic>Pigments</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - metabolism</topic><topic>Plants - metabolism</topic><topic>Spectrophotometry</topic><topic>Surface Plasmon Resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kyeyune, Farooq</creatorcontrib><creatorcontrib>Botha, Joshua L</creatorcontrib><creatorcontrib>van Heerden, Bertus</creatorcontrib><creatorcontrib>Malý, Pavel</creatorcontrib><creatorcontrib>van Grondelle, Rienk</creatorcontrib><creatorcontrib>Diale, Mmantsae</creatorcontrib><creatorcontrib>Krüger, Tjaart P. J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kyeyune, Farooq</au><au>Botha, Joshua L</au><au>van Heerden, Bertus</au><au>Malý, Pavel</au><au>van Grondelle, Rienk</au><au>Diale, Mmantsae</au><au>Krüger, Tjaart P. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong plasmonic fluorescence enhancement of individual plant light-harvesting complexes</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2019-08-15</date><risdate>2019</risdate><volume>11</volume><issue>32</issue><spage>15139</spage><epage>15146</epage><pages>15139-15146</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Plasmonic coupling of metallic nanoparticles and adjacent pigments can dramatically increase the brightness of the pigments due to the enhanced local electric field. Here, we demonstrate that the fluorescence brightness of a single plant light-harvesting complex (LHCII) can be significantly enhanced when coupled to a gold nanorod (AuNR). The AuNRs utilized in this study were prepared
via
chemical reactions, and the hybrid system was constructed using a simple and economical spin-assisted layer-by-layer technique. Enhancement of fluorescence brightness of up to 240-fold was observed, accompanied by a 109-fold decrease in the average (amplitude-weighted) fluorescence lifetime from approximately 3.5 ns down to 32 ps, corresponding to an excitation enhancement of 63-fold and emission enhancement of up to 3.8-fold. This large enhancement is due to the strong spectral overlap of the longitudinal localized surface plasmon resonance of the utilized AuNRs and the absorption or emission bands of LHCII. This study provides an inexpensive strategy to explore the fluorescence dynamics of weakly emitting photosynthetic light-harvesting complexes at the single molecule level.
Plasmon-enhanced fluorescence for detection of weakly emitting individual photosynthetic pigment-protein complexes.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31372623</pmid><doi>10.1039/c9nr04558a</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4268-5517</orcidid><orcidid>https://orcid.org/0000-0002-9033-9854</orcidid><orcidid>https://orcid.org/0000-0002-6769-0697</orcidid><orcidid>https://orcid.org/0000-0002-0801-6512</orcidid><orcidid>https://orcid.org/0000-0001-9244-9718</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2019-08, Vol.11 (32), p.15139-15146 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_2268311064 |
source | Royal Society of Chemistry Journals |
subjects | Brightness Chemical reactions Electric fields Emission analysis Fluorescence Gold Gold - chemistry Hybrid systems Immobilized Proteins - chemistry Immobilized Proteins - metabolism Light-Harvesting Protein Complexes - chemistry Light-Harvesting Protein Complexes - metabolism Longitude Microscopy, Electron, Transmission Nanoparticles Nanorods Nanotubes - chemistry Organic chemistry Photosynthesis Pigments Plant Proteins - chemistry Plant Proteins - metabolism Plants - metabolism Spectrophotometry Surface Plasmon Resonance |
title | Strong plasmonic fluorescence enhancement of individual plant light-harvesting complexes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A29%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20plasmonic%20fluorescence%20enhancement%20of%20individual%20plant%20light-harvesting%20complexes&rft.jtitle=Nanoscale&rft.au=Kyeyune,%20Farooq&rft.date=2019-08-15&rft.volume=11&rft.issue=32&rft.spage=15139&rft.epage=15146&rft.pages=15139-15146&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c9nr04558a&rft_dat=%3Cproquest_pubme%3E2268311064%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-99b347a4dc6d7d0ccc95c956aa53e7c4c89f55d82436786ab9ab69d9d05320d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2273176780&rft_id=info:pmid/31372623&rfr_iscdi=true |