Loading…
The impact of cell morphology and algal organic matter on algal floc properties
Physical floc properties were systematically investigated by analysing the structure of algal and cyanobacterial flocs produced by five species (green algae (Chlorella vulgaris) and cyanobacteria (Microcystis aeruginosa (strain CS-564), Microcystis aeruginosa (strain CS-555/01), Dolichospermum circi...
Saved in:
Published in: | Water research (Oxford) 2019-10, Vol.163, p.114887-114887, Article 114887 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Physical floc properties were systematically investigated by analysing the structure of algal and cyanobacterial flocs produced by five species (green algae (Chlorella vulgaris) and cyanobacteria (Microcystis aeruginosa (strain CS-564), Microcystis aeruginosa (strain CS-555/01), Dolichospermum circinale and Cylindrospermopsis raciborskii) using aluminium sulphate (alum) at different doses and pH values. The properties of spherical, compact flocs were determined using a laser diffraction instrument and a new in situ image analysis technique was validated to analyse the structure of more complex flocs. The incorporation of algal-derived organic matter (AOM) into the flocs was inferred by evaluating the dissolved organic matter concentration character before and after flocculation using liquid chromatography with organic carbon detection (LC-OCD). D. circinale, C. raciborskii, and M. aeruginosa (CS-564) produced large flocs (2–9 mm), while M. aeruginosa (CS-555) and C. vulgaris produced smaller flocs ( |
---|---|
ISSN: | 0043-1354 1879-2448 |
DOI: | 10.1016/j.watres.2019.114887 |