Loading…
High-Performance Li-Ion Batteries Using Nickel-Rich Lithium Nickel Cobalt Aluminium Oxide–Nanocarbon Core–Shell Cathode: In Operando X‑ray Diffraction
Nickel-rich layered, mixed lithium transition-metal oxides have been pursued as a propitious cathode material for the future-generation lithium-ion batteries due to their high energy density and low cost. Nevertheless, acute side reactions between Ni4+ and carbonate electrolyte lead to poor cycling...
Saved in:
Published in: | ACS applied materials & interfaces 2019-08, Vol.11 (34), p.30719-30727 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a330t-381ff1b9e7e74bbb587068fd3e35dad4622e53f21585eb6185460a6569a6c05c3 |
---|---|
cites | cdi_FETCH-LOGICAL-a330t-381ff1b9e7e74bbb587068fd3e35dad4622e53f21585eb6185460a6569a6c05c3 |
container_end_page | 30727 |
container_issue | 34 |
container_start_page | 30719 |
container_title | ACS applied materials & interfaces |
container_volume | 11 |
creator | Vadivel, Selvamani Phattharasupakun, Nutthaphon Wutthiprom, Juthaporn duangdangchote, Salatan Sawangphruk, Montree |
description | Nickel-rich layered, mixed lithium transition-metal oxides have been pursued as a propitious cathode material for the future-generation lithium-ion batteries due to their high energy density and low cost. Nevertheless, acute side reactions between Ni4+ and carbonate electrolyte lead to poor cycling as well as rate performance, which limits their large-scale applications. Here, core–shell like LiNi0.8Co0.15Al0.05O2 (NCA)–carbon composite synthesized by a solvent-free mechanofusion method is reported to solve this issue. Such a core–shell structure exhibits a splendid rate as well as stable cycling when compared to the physically blended NCA. In operando X-ray diffraction studies show that both materials experience anisotropic structural change, i.e., stacking c-axis undergoes a gradual expansion followed by an abrupt shrinkage; meanwhile, the a-axis contracts during the charging process and vice versa. Interestingly, the core–shell material displays a significantly high reversible capacity of 91% in the formation cycle at 0.1C and a retention of 84% at 0.5C after 250 cycles, whereas pristine NCA retains 71%. The robust mechanical force assisted dry coating obtained by the mechanofusion method shows improved electrochemical performance and demonstrates its practical feasibility. |
doi_str_mv | 10.1021/acsami.9b06553 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2268315939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2268315939</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-381ff1b9e7e74bbb587068fd3e35dad4622e53f21585eb6185460a6569a6c05c3</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhS0EoqWwZYm8REgZ_BN7EnZlKO1Io04FVGIX2c5145LYg51I7a6vgNj26fokeDRDd11d6-g7R_f6IPSWkhkljH5UJqnBzWpNpBD8GTqkdVkWFRPs-eO7LA_Qq5SuCZGcEfESHXDKZc2YPET3Z-6qKy4g2hAH5Q3glSuWwePPahwhOkj4Mjl_hc-d-QV98c2ZLiNj56Zhr-FF0Kof8XE_Dc5v9fWNa-Hh7u-58sGoqHPcIsSt8r2DPhvU2IUWPuGlx-sNROXbgH8-3P2J6hZ_cdZGZUYX_Gv0wqo-wZv9PEKXX09-LM6K1fp0uTheFYpzMha8otZSXcMc5qXWWlRzIivbcuCiVW0pGQPBLaOiEqAlrUQpiZJC1koaIgw_Qu93uZsYfk-QxmZwyeRNlYcwpSb_VMWpqHmd0dkONTGkFME2m-gGFW8bSpptI82ukWbfSDa822dPeoD2Ef9fQQY-7IBsbK7DFH0-9am0f4T3me0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268315939</pqid></control><display><type>article</type><title>High-Performance Li-Ion Batteries Using Nickel-Rich Lithium Nickel Cobalt Aluminium Oxide–Nanocarbon Core–Shell Cathode: In Operando X‑ray Diffraction</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Vadivel, Selvamani ; Phattharasupakun, Nutthaphon ; Wutthiprom, Juthaporn ; duangdangchote, Salatan ; Sawangphruk, Montree</creator><creatorcontrib>Vadivel, Selvamani ; Phattharasupakun, Nutthaphon ; Wutthiprom, Juthaporn ; duangdangchote, Salatan ; Sawangphruk, Montree</creatorcontrib><description>Nickel-rich layered, mixed lithium transition-metal oxides have been pursued as a propitious cathode material for the future-generation lithium-ion batteries due to their high energy density and low cost. Nevertheless, acute side reactions between Ni4+ and carbonate electrolyte lead to poor cycling as well as rate performance, which limits their large-scale applications. Here, core–shell like LiNi0.8Co0.15Al0.05O2 (NCA)–carbon composite synthesized by a solvent-free mechanofusion method is reported to solve this issue. Such a core–shell structure exhibits a splendid rate as well as stable cycling when compared to the physically blended NCA. In operando X-ray diffraction studies show that both materials experience anisotropic structural change, i.e., stacking c-axis undergoes a gradual expansion followed by an abrupt shrinkage; meanwhile, the a-axis contracts during the charging process and vice versa. Interestingly, the core–shell material displays a significantly high reversible capacity of 91% in the formation cycle at 0.1C and a retention of 84% at 0.5C after 250 cycles, whereas pristine NCA retains 71%. The robust mechanical force assisted dry coating obtained by the mechanofusion method shows improved electrochemical performance and demonstrates its practical feasibility.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b06553</identifier><identifier>PMID: 31369226</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2019-08, Vol.11 (34), p.30719-30727</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-381ff1b9e7e74bbb587068fd3e35dad4622e53f21585eb6185460a6569a6c05c3</citedby><cites>FETCH-LOGICAL-a330t-381ff1b9e7e74bbb587068fd3e35dad4622e53f21585eb6185460a6569a6c05c3</cites><orcidid>0000-0003-2769-4172</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31369226$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vadivel, Selvamani</creatorcontrib><creatorcontrib>Phattharasupakun, Nutthaphon</creatorcontrib><creatorcontrib>Wutthiprom, Juthaporn</creatorcontrib><creatorcontrib>duangdangchote, Salatan</creatorcontrib><creatorcontrib>Sawangphruk, Montree</creatorcontrib><title>High-Performance Li-Ion Batteries Using Nickel-Rich Lithium Nickel Cobalt Aluminium Oxide–Nanocarbon Core–Shell Cathode: In Operando X‑ray Diffraction</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Nickel-rich layered, mixed lithium transition-metal oxides have been pursued as a propitious cathode material for the future-generation lithium-ion batteries due to their high energy density and low cost. Nevertheless, acute side reactions between Ni4+ and carbonate electrolyte lead to poor cycling as well as rate performance, which limits their large-scale applications. Here, core–shell like LiNi0.8Co0.15Al0.05O2 (NCA)–carbon composite synthesized by a solvent-free mechanofusion method is reported to solve this issue. Such a core–shell structure exhibits a splendid rate as well as stable cycling when compared to the physically blended NCA. In operando X-ray diffraction studies show that both materials experience anisotropic structural change, i.e., stacking c-axis undergoes a gradual expansion followed by an abrupt shrinkage; meanwhile, the a-axis contracts during the charging process and vice versa. Interestingly, the core–shell material displays a significantly high reversible capacity of 91% in the formation cycle at 0.1C and a retention of 84% at 0.5C after 250 cycles, whereas pristine NCA retains 71%. The robust mechanical force assisted dry coating obtained by the mechanofusion method shows improved electrochemical performance and demonstrates its practical feasibility.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kc1u1DAUhS0EoqWwZYm8REgZ_BN7EnZlKO1Io04FVGIX2c5145LYg51I7a6vgNj26fokeDRDd11d6-g7R_f6IPSWkhkljH5UJqnBzWpNpBD8GTqkdVkWFRPs-eO7LA_Qq5SuCZGcEfESHXDKZc2YPET3Z-6qKy4g2hAH5Q3glSuWwePPahwhOkj4Mjl_hc-d-QV98c2ZLiNj56Zhr-FF0Kof8XE_Dc5v9fWNa-Hh7u-58sGoqHPcIsSt8r2DPhvU2IUWPuGlx-sNROXbgH8-3P2J6hZ_cdZGZUYX_Gv0wqo-wZv9PEKXX09-LM6K1fp0uTheFYpzMha8otZSXcMc5qXWWlRzIivbcuCiVW0pGQPBLaOiEqAlrUQpiZJC1koaIgw_Qu93uZsYfk-QxmZwyeRNlYcwpSb_VMWpqHmd0dkONTGkFME2m-gGFW8bSpptI82ukWbfSDa822dPeoD2Ef9fQQY-7IBsbK7DFH0-9am0f4T3me0</recordid><startdate>20190828</startdate><enddate>20190828</enddate><creator>Vadivel, Selvamani</creator><creator>Phattharasupakun, Nutthaphon</creator><creator>Wutthiprom, Juthaporn</creator><creator>duangdangchote, Salatan</creator><creator>Sawangphruk, Montree</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2769-4172</orcidid></search><sort><creationdate>20190828</creationdate><title>High-Performance Li-Ion Batteries Using Nickel-Rich Lithium Nickel Cobalt Aluminium Oxide–Nanocarbon Core–Shell Cathode: In Operando X‑ray Diffraction</title><author>Vadivel, Selvamani ; Phattharasupakun, Nutthaphon ; Wutthiprom, Juthaporn ; duangdangchote, Salatan ; Sawangphruk, Montree</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-381ff1b9e7e74bbb587068fd3e35dad4622e53f21585eb6185460a6569a6c05c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vadivel, Selvamani</creatorcontrib><creatorcontrib>Phattharasupakun, Nutthaphon</creatorcontrib><creatorcontrib>Wutthiprom, Juthaporn</creatorcontrib><creatorcontrib>duangdangchote, Salatan</creatorcontrib><creatorcontrib>Sawangphruk, Montree</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vadivel, Selvamani</au><au>Phattharasupakun, Nutthaphon</au><au>Wutthiprom, Juthaporn</au><au>duangdangchote, Salatan</au><au>Sawangphruk, Montree</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Performance Li-Ion Batteries Using Nickel-Rich Lithium Nickel Cobalt Aluminium Oxide–Nanocarbon Core–Shell Cathode: In Operando X‑ray Diffraction</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-08-28</date><risdate>2019</risdate><volume>11</volume><issue>34</issue><spage>30719</spage><epage>30727</epage><pages>30719-30727</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Nickel-rich layered, mixed lithium transition-metal oxides have been pursued as a propitious cathode material for the future-generation lithium-ion batteries due to their high energy density and low cost. Nevertheless, acute side reactions between Ni4+ and carbonate electrolyte lead to poor cycling as well as rate performance, which limits their large-scale applications. Here, core–shell like LiNi0.8Co0.15Al0.05O2 (NCA)–carbon composite synthesized by a solvent-free mechanofusion method is reported to solve this issue. Such a core–shell structure exhibits a splendid rate as well as stable cycling when compared to the physically blended NCA. In operando X-ray diffraction studies show that both materials experience anisotropic structural change, i.e., stacking c-axis undergoes a gradual expansion followed by an abrupt shrinkage; meanwhile, the a-axis contracts during the charging process and vice versa. Interestingly, the core–shell material displays a significantly high reversible capacity of 91% in the formation cycle at 0.1C and a retention of 84% at 0.5C after 250 cycles, whereas pristine NCA retains 71%. The robust mechanical force assisted dry coating obtained by the mechanofusion method shows improved electrochemical performance and demonstrates its practical feasibility.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31369226</pmid><doi>10.1021/acsami.9b06553</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2769-4172</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2019-08, Vol.11 (34), p.30719-30727 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2268315939 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | High-Performance Li-Ion Batteries Using Nickel-Rich Lithium Nickel Cobalt Aluminium Oxide–Nanocarbon Core–Shell Cathode: In Operando X‑ray Diffraction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A22%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Performance%20Li-Ion%20Batteries%20Using%20Nickel-Rich%20Lithium%20Nickel%20Cobalt%20Aluminium%20Oxide%E2%80%93Nanocarbon%20Core%E2%80%93Shell%20Cathode:%20In%20Operando%20X%E2%80%91ray%20Diffraction&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Vadivel,%20Selvamani&rft.date=2019-08-28&rft.volume=11&rft.issue=34&rft.spage=30719&rft.epage=30727&rft.pages=30719-30727&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b06553&rft_dat=%3Cproquest_cross%3E2268315939%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a330t-381ff1b9e7e74bbb587068fd3e35dad4622e53f21585eb6185460a6569a6c05c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2268315939&rft_id=info:pmid/31369226&rfr_iscdi=true |