Loading…

Chest MRI Using Multivane-XD, a Novel T2-Weighted Free Breathing MR Sequence

To compare image quality of free-breathing T2-weighted MultiVane-XD (MVXD) sequence (non-Cartesian k-space filling using radial rectangular blades) with conventional MR sequences (short tau inversion recovery [STIR],balanced true field echo [BTFE], T1 in phase fast field echo [T1 FFE], and T1-fat sa...

Full description

Saved in:
Bibliographic Details
Published in:Current problems in diagnostic radiology 2021-01, Vol.50 (1), p.41-47
Main Authors: Kapur, Savinay, Jana, Manisha, Gupta, Lalit, Bhalla, Ashu S., Naranje, Priyanka, Gupta, Arun K.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To compare image quality of free-breathing T2-weighted MultiVane-XD (MVXD) sequence (non-Cartesian k-space filling using radial rectangular blades) with conventional MR sequences (short tau inversion recovery [STIR],balanced true field echo [BTFE], T1 in phase fast field echo [T1 FFE], and T1-fat saturated postgadolinium [T1PG]) in MR imaging of chest. Twenty-one patients (10 men and 11 women) underwent chest MRI including T2W MVXD, STIR, BTFE (18/21), T1 FFE, T1PG (10/21) sequences at 1.5 T. Two reviewers (A.S.B and M.J. with 20 and 10 years of experience in pulmonary imaging, respectively) evaluated each sequence with respect to overall image quality, image sharpness, definition of mediastinal vessels including the aorta, pulmonary arteries, superior vena cava, intrapulmonary vessels; trachea, main bronchi, intrapulmonary airways; lung-mediastinal interface, pulmonary lesion detection, and artefacts in the upper, middle, and lower third of chest using 5-point scales. No sedation was given. Pairwise comparisons between T2W MVXD and the 4 conventional sequences were made using unpaired student's t test. Mean age of patients was 30.67 years (range: 6-60 years). T2 MVXD showed significantly better overall image quality and sharpness than STIR, T1 FFE, and T1PG (P < 0.01) while it was comparable to BTFE. Mediastinal vessels were significantly better visualized on T2 MVXD as compared to STIR and T1 (P < 0.003). However, BTFE and T1PG were superior to T2 MVXD for visualization of great vessels, SVC, and intrapulmonary vessels (P < 0.01). Visualization of trachea, major bronchi, intrapulmonary airways as well as intrapulmonary lesion detection was significantly better on T2 MVXD images in comparison to any of the other 4 sequences (P < 0.03). Intrapulmonary artifacts were significantly lesser in BTFE images as compared to T2 MVXD (P < 0.01). No significant difference was found between the severity of intrapulmonary artifacts in other MR sequences as compared to T2 MVXD. By virtue of its better overall image quality, sharpness, superior visualization of mediastinal airways, and lesion detection, T2 MultiVane-XD promises to be a robust addition in the armamentarium of thoracic radiologists.
ISSN:0363-0188
1535-6302
DOI:10.1067/j.cpradiol.2019.07.009