Loading…
One-Shot Operational Quantum Resource Theory
A fundamental approach for the characterization and quantification of all kinds of resources is to study the conversion between different resource objects under certain constraints. Here we analyze, from a resource-nonspecific standpoint, the optimal efficiency of resource formation and distillation...
Saved in:
Published in: | Physical review letters 2019-07, Vol.123 (2), p.020401-020401, Article 020401 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A fundamental approach for the characterization and quantification of all kinds of resources is to study the conversion between different resource objects under certain constraints. Here we analyze, from a resource-nonspecific standpoint, the optimal efficiency of resource formation and distillation tasks with only a single copy of the given quantum state, thereby establishing a unified framework of one-shot quantum resource manipulation. We find general bounds on the optimal rates characterized by resource measures based on the smooth max- or min-relative entropies and hypothesis testing relative entropy, as well as the free robustness measure, providing them with general operational meanings in terms of optimal state conversion. Our results encompass a wide class of resource theories via the theory-dependent coefficients we introduce, and the discussions are solidified by important examples, such as entanglement, coherence, superposition, magic states, asymmetry, and thermal nonequilibrium. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.123.020401 |