Loading…
Conductivity in the Square Lattice Hubbard Model at High Temperatures: Importance of Vertex Corrections
Recent experiments on cold atoms in optical lattices allow for a quantitative comparison of the measurements to the conductivity calculations in the square lattice Hubbard model. However, the available calculations do not give consistent results, and the question of the exact solution for the conduc...
Saved in:
Published in: | Physical review letters 2019-07, Vol.123 (3), p.036601-036601, Article 036601 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent experiments on cold atoms in optical lattices allow for a quantitative comparison of the measurements to the conductivity calculations in the square lattice Hubbard model. However, the available calculations do not give consistent results, and the question of the exact solution for the conductivity in the Hubbard model remained open. In this Letter, we employ several complementary state-of-the-art numerical methods to disentangle various contributions to conductivity and identify the best available result to be compared to experiment. We find that, at relevant (high) temperatures, the self-energy is practically local, yet the vertex corrections remain rather important, contrary to expectations. The finite-size effects are small even at the lattice size 4×4, and the corresponding Lanczos diagonalization result is, therefore, close to the exact result in the thermodynamic limit. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.123.036601 |