Loading…
Silencing of lemur tyrosine kinase 2 restricts the proliferation and invasion of hepatocellular carcinoma through modulation of GSK-3β/Wnt/β-catenin signaling
Lemur tyrosine kinase 2 (LMTK2) was recently identified as a novel cancer-related gene in several human cancers. However, little is known of its function in hepatocellular carcinoma (HCC). Here we aim to investigate the expression pattern, biological function, and regulatory mechanism of LMTK2 in HC...
Saved in:
Published in: | Biochemical and biophysical research communications 2019-10, Vol.517 (4), p.722-728 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lemur tyrosine kinase 2 (LMTK2) was recently identified as a novel cancer-related gene in several human cancers. However, little is known of its function in hepatocellular carcinoma (HCC). Here we aim to investigate the expression pattern, biological function, and regulatory mechanism of LMTK2 in HCC. We found that LMTK2 was highly expressed in HCC tissues, and patients with high expression of LMTK2 in tumor tissues had shorter survival times. LMTK2 expression was also elevated in HCC cell lines, and LMTK2 silencing markedly repressed the proliferation and invasion of HCC cells. By contrast, LMTK2 overexpression exerted promotion effects on HCC cell proliferation and invasion. Our results demonstrate that LMTK2 silencing decreases the phosphorylation of glycogen synthase kinase-3β (GSK-3β) and the expression of an active β-catenin protein, leading to inhibition of Wnt/β-catenin signaling. Notably, GSK-3β inhibition significantly reversed the LMTK2 silencing-mediated antitumor effect on proliferation, invasion, and Wnt/β-catenin signaling in HCC cells. LMTK2 silencing retarded the tumor growth of HCC cells in an in vivo xenograft tumor model, associated with downregulation of Wnt/β-catenin signaling. In conclusion, our findings suggest that silencing of LMTK2 suppresses the proliferation and invasion of HCC cells through the inhibition of Wnt/β-catenin signaling, via GSK-3β, highlighting the importance of LMTK2/GSK-3β/Wnt/β-catenin signaling in HCC progression.
[Display omitted]
•LMTK2 expression is elevated in HCC.•LMTK2 knockdown represses HCC cell proliferation and invasion.•LMTK2 regulates Wnt/β-catenin signaling by GSK-3β.•LMTK2 knockdown retards HCC tumor growth in vivo. |
---|---|
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1016/j.bbrc.2019.07.122 |