Loading…
Artificial intelligence using a convolutional neural network for automatic detection of small‐bowel angioectasia in capsule endoscopy images
Background and Aim Although small‐bowel angioectasia is reported as the most common cause of bleeding in patients and frequently diagnosed by capsule endoscopy (CE) in patients with obscure gastrointestinal bleeding, a computer‐aided detection method has not been established. We developed an artific...
Saved in:
Published in: | Digestive endoscopy 2020-03, Vol.32 (3), p.382-390 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4157-45164cd109e243da24dd11eb4322798ae901d1273be2ebb7f5bac40765de12bd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4157-45164cd109e243da24dd11eb4322798ae901d1273be2ebb7f5bac40765de12bd3 |
container_end_page | 390 |
container_issue | 3 |
container_start_page | 382 |
container_title | Digestive endoscopy |
container_volume | 32 |
creator | Tsuboi, Akiyoshi Oka, Shiro Aoyama, Kazuharu Saito, Hiroaki Aoki, Tomonori Yamada, Atsuo Matsuda, Tomoki Fujishiro, Mitsuhiro Ishihara, Soichiro Nakahori, Masato Koike, Kazuhiko Tanaka, Shinji Tada, Tomohiro |
description | Background and Aim
Although small‐bowel angioectasia is reported as the most common cause of bleeding in patients and frequently diagnosed by capsule endoscopy (CE) in patients with obscure gastrointestinal bleeding, a computer‐aided detection method has not been established. We developed an artificial intelligence system with deep learning that can automatically detect small‐bowel angioectasia in CE images.
Methods
We trained a deep convolutional neural network (CNN) system based on Single Shot Multibox Detector using 2237 CE images of angioectasia. We assessed its diagnostic accuracy by calculating the area under the receiver operating characteristic curve (ROC‐AUC), sensitivity, specificity, positive predictive value, and negative predictive value using an independent test set of 10 488 small‐bowel images, including 488 images of small‐bowel angioectasia.
Results
The AUC to detect angioectasia was 0.998. Sensitivity, specificity, positive predictive value, and negative predictive value of CNN were 98.8%, 98.4%, 75.4%, and 99.9%, respectively, at a cut‐off value of 0.36 for the probability score.
Conclusions
We developed and validated a new system based on CNN to automatically detect angioectasia in CE images. This may be well applicable to daily clinical practice to reduce the burden of physicians as well as to reduce oversight. |
doi_str_mv | 10.1111/den.13507 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2270019053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2270019053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4157-45164cd109e243da24dd11eb4322798ae901d1273be2ebb7f5bac40765de12bd3</originalsourceid><addsrcrecordid>eNp1kMtO3DAUQC1UBFNg0R-ovCyLgK8fSbNEPNpKCDawjhz7ZuTWsad2wmh2fEHVb-RLahjKDm_uwkfHvoeQT8BOoJxTi-EEhGLNDlmAlKKCuoYPZMFaUJWqhdonH3P-yRjwVso9si9AtLypmwX5c5YmNzjjtKcuTOi9W2IwSOfswpJqamJ4iH6eXAwFCTinlzGtY_pFh5ionqc46skZanFC8wzSONA8au-fHv_2cY2e6rB0sVzq7HR5hxq9yrNHisHGbOJqQ92ol5gPye6gfcaj13lA7q8u786_V9e3336cn11XRoJqKqmglsYCa5FLYTWX1gJgLwXnTftVY8vAAm9Ejxz7vhlUr41kTa0sAu-tOCBftt5Vir9nzFM3umzK9jpgnHNXNKVWy5Qo6PEWNSnmnHDoVql8Nm06YN1z_q7k717yF_bzq3buR7Rv5P_eBTjdAmvncfO-qbu4vNkq_wFnOZNM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2270019053</pqid></control><display><type>article</type><title>Artificial intelligence using a convolutional neural network for automatic detection of small‐bowel angioectasia in capsule endoscopy images</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Tsuboi, Akiyoshi ; Oka, Shiro ; Aoyama, Kazuharu ; Saito, Hiroaki ; Aoki, Tomonori ; Yamada, Atsuo ; Matsuda, Tomoki ; Fujishiro, Mitsuhiro ; Ishihara, Soichiro ; Nakahori, Masato ; Koike, Kazuhiko ; Tanaka, Shinji ; Tada, Tomohiro</creator><creatorcontrib>Tsuboi, Akiyoshi ; Oka, Shiro ; Aoyama, Kazuharu ; Saito, Hiroaki ; Aoki, Tomonori ; Yamada, Atsuo ; Matsuda, Tomoki ; Fujishiro, Mitsuhiro ; Ishihara, Soichiro ; Nakahori, Masato ; Koike, Kazuhiko ; Tanaka, Shinji ; Tada, Tomohiro</creatorcontrib><description>Background and Aim
Although small‐bowel angioectasia is reported as the most common cause of bleeding in patients and frequently diagnosed by capsule endoscopy (CE) in patients with obscure gastrointestinal bleeding, a computer‐aided detection method has not been established. We developed an artificial intelligence system with deep learning that can automatically detect small‐bowel angioectasia in CE images.
Methods
We trained a deep convolutional neural network (CNN) system based on Single Shot Multibox Detector using 2237 CE images of angioectasia. We assessed its diagnostic accuracy by calculating the area under the receiver operating characteristic curve (ROC‐AUC), sensitivity, specificity, positive predictive value, and negative predictive value using an independent test set of 10 488 small‐bowel images, including 488 images of small‐bowel angioectasia.
Results
The AUC to detect angioectasia was 0.998. Sensitivity, specificity, positive predictive value, and negative predictive value of CNN were 98.8%, 98.4%, 75.4%, and 99.9%, respectively, at a cut‐off value of 0.36 for the probability score.
Conclusions
We developed and validated a new system based on CNN to automatically detect angioectasia in CE images. This may be well applicable to daily clinical practice to reduce the burden of physicians as well as to reduce oversight.</description><identifier>ISSN: 0915-5635</identifier><identifier>EISSN: 1443-1661</identifier><identifier>DOI: 10.1111/den.13507</identifier><identifier>PMID: 31392767</identifier><language>eng</language><publisher>Australia</publisher><subject>Aged ; angioectasia ; Capsule Endoscopy ; convolutional neural network ; Deep Learning ; Dilatation, Pathologic ; Female ; Gastrointestinal Hemorrhage - diagnostic imaging ; Humans ; Intestine, Small - diagnostic imaging ; Intestine, Small - pathology ; Male ; Middle Aged ; Neural Networks, Computer ; Predictive Value of Tests ; Retrospective Studies ; ROC Curve ; small bowel</subject><ispartof>Digestive endoscopy, 2020-03, Vol.32 (3), p.382-390</ispartof><rights>2019 Japan Gastroenterological Endoscopy Society</rights><rights>2019 Japan Gastroenterological Endoscopy Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4157-45164cd109e243da24dd11eb4322798ae901d1273be2ebb7f5bac40765de12bd3</citedby><cites>FETCH-LOGICAL-c4157-45164cd109e243da24dd11eb4322798ae901d1273be2ebb7f5bac40765de12bd3</cites><orcidid>0000-0002-1652-0743 ; 0000-0003-4314-7777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31392767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsuboi, Akiyoshi</creatorcontrib><creatorcontrib>Oka, Shiro</creatorcontrib><creatorcontrib>Aoyama, Kazuharu</creatorcontrib><creatorcontrib>Saito, Hiroaki</creatorcontrib><creatorcontrib>Aoki, Tomonori</creatorcontrib><creatorcontrib>Yamada, Atsuo</creatorcontrib><creatorcontrib>Matsuda, Tomoki</creatorcontrib><creatorcontrib>Fujishiro, Mitsuhiro</creatorcontrib><creatorcontrib>Ishihara, Soichiro</creatorcontrib><creatorcontrib>Nakahori, Masato</creatorcontrib><creatorcontrib>Koike, Kazuhiko</creatorcontrib><creatorcontrib>Tanaka, Shinji</creatorcontrib><creatorcontrib>Tada, Tomohiro</creatorcontrib><title>Artificial intelligence using a convolutional neural network for automatic detection of small‐bowel angioectasia in capsule endoscopy images</title><title>Digestive endoscopy</title><addtitle>Dig Endosc</addtitle><description>Background and Aim
Although small‐bowel angioectasia is reported as the most common cause of bleeding in patients and frequently diagnosed by capsule endoscopy (CE) in patients with obscure gastrointestinal bleeding, a computer‐aided detection method has not been established. We developed an artificial intelligence system with deep learning that can automatically detect small‐bowel angioectasia in CE images.
Methods
We trained a deep convolutional neural network (CNN) system based on Single Shot Multibox Detector using 2237 CE images of angioectasia. We assessed its diagnostic accuracy by calculating the area under the receiver operating characteristic curve (ROC‐AUC), sensitivity, specificity, positive predictive value, and negative predictive value using an independent test set of 10 488 small‐bowel images, including 488 images of small‐bowel angioectasia.
Results
The AUC to detect angioectasia was 0.998. Sensitivity, specificity, positive predictive value, and negative predictive value of CNN were 98.8%, 98.4%, 75.4%, and 99.9%, respectively, at a cut‐off value of 0.36 for the probability score.
Conclusions
We developed and validated a new system based on CNN to automatically detect angioectasia in CE images. This may be well applicable to daily clinical practice to reduce the burden of physicians as well as to reduce oversight.</description><subject>Aged</subject><subject>angioectasia</subject><subject>Capsule Endoscopy</subject><subject>convolutional neural network</subject><subject>Deep Learning</subject><subject>Dilatation, Pathologic</subject><subject>Female</subject><subject>Gastrointestinal Hemorrhage - diagnostic imaging</subject><subject>Humans</subject><subject>Intestine, Small - diagnostic imaging</subject><subject>Intestine, Small - pathology</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Neural Networks, Computer</subject><subject>Predictive Value of Tests</subject><subject>Retrospective Studies</subject><subject>ROC Curve</subject><subject>small bowel</subject><issn>0915-5635</issn><issn>1443-1661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtO3DAUQC1UBFNg0R-ovCyLgK8fSbNEPNpKCDawjhz7ZuTWsad2wmh2fEHVb-RLahjKDm_uwkfHvoeQT8BOoJxTi-EEhGLNDlmAlKKCuoYPZMFaUJWqhdonH3P-yRjwVso9si9AtLypmwX5c5YmNzjjtKcuTOi9W2IwSOfswpJqamJ4iH6eXAwFCTinlzGtY_pFh5ionqc46skZanFC8wzSONA8au-fHv_2cY2e6rB0sVzq7HR5hxq9yrNHisHGbOJqQ92ol5gPye6gfcaj13lA7q8u786_V9e3336cn11XRoJqKqmglsYCa5FLYTWX1gJgLwXnTftVY8vAAm9Ejxz7vhlUr41kTa0sAu-tOCBftt5Vir9nzFM3umzK9jpgnHNXNKVWy5Qo6PEWNSnmnHDoVql8Nm06YN1z_q7k717yF_bzq3buR7Rv5P_eBTjdAmvncfO-qbu4vNkq_wFnOZNM</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Tsuboi, Akiyoshi</creator><creator>Oka, Shiro</creator><creator>Aoyama, Kazuharu</creator><creator>Saito, Hiroaki</creator><creator>Aoki, Tomonori</creator><creator>Yamada, Atsuo</creator><creator>Matsuda, Tomoki</creator><creator>Fujishiro, Mitsuhiro</creator><creator>Ishihara, Soichiro</creator><creator>Nakahori, Masato</creator><creator>Koike, Kazuhiko</creator><creator>Tanaka, Shinji</creator><creator>Tada, Tomohiro</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1652-0743</orcidid><orcidid>https://orcid.org/0000-0003-4314-7777</orcidid></search><sort><creationdate>202003</creationdate><title>Artificial intelligence using a convolutional neural network for automatic detection of small‐bowel angioectasia in capsule endoscopy images</title><author>Tsuboi, Akiyoshi ; Oka, Shiro ; Aoyama, Kazuharu ; Saito, Hiroaki ; Aoki, Tomonori ; Yamada, Atsuo ; Matsuda, Tomoki ; Fujishiro, Mitsuhiro ; Ishihara, Soichiro ; Nakahori, Masato ; Koike, Kazuhiko ; Tanaka, Shinji ; Tada, Tomohiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4157-45164cd109e243da24dd11eb4322798ae901d1273be2ebb7f5bac40765de12bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aged</topic><topic>angioectasia</topic><topic>Capsule Endoscopy</topic><topic>convolutional neural network</topic><topic>Deep Learning</topic><topic>Dilatation, Pathologic</topic><topic>Female</topic><topic>Gastrointestinal Hemorrhage - diagnostic imaging</topic><topic>Humans</topic><topic>Intestine, Small - diagnostic imaging</topic><topic>Intestine, Small - pathology</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Neural Networks, Computer</topic><topic>Predictive Value of Tests</topic><topic>Retrospective Studies</topic><topic>ROC Curve</topic><topic>small bowel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsuboi, Akiyoshi</creatorcontrib><creatorcontrib>Oka, Shiro</creatorcontrib><creatorcontrib>Aoyama, Kazuharu</creatorcontrib><creatorcontrib>Saito, Hiroaki</creatorcontrib><creatorcontrib>Aoki, Tomonori</creatorcontrib><creatorcontrib>Yamada, Atsuo</creatorcontrib><creatorcontrib>Matsuda, Tomoki</creatorcontrib><creatorcontrib>Fujishiro, Mitsuhiro</creatorcontrib><creatorcontrib>Ishihara, Soichiro</creatorcontrib><creatorcontrib>Nakahori, Masato</creatorcontrib><creatorcontrib>Koike, Kazuhiko</creatorcontrib><creatorcontrib>Tanaka, Shinji</creatorcontrib><creatorcontrib>Tada, Tomohiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Digestive endoscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsuboi, Akiyoshi</au><au>Oka, Shiro</au><au>Aoyama, Kazuharu</au><au>Saito, Hiroaki</au><au>Aoki, Tomonori</au><au>Yamada, Atsuo</au><au>Matsuda, Tomoki</au><au>Fujishiro, Mitsuhiro</au><au>Ishihara, Soichiro</au><au>Nakahori, Masato</au><au>Koike, Kazuhiko</au><au>Tanaka, Shinji</au><au>Tada, Tomohiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence using a convolutional neural network for automatic detection of small‐bowel angioectasia in capsule endoscopy images</atitle><jtitle>Digestive endoscopy</jtitle><addtitle>Dig Endosc</addtitle><date>2020-03</date><risdate>2020</risdate><volume>32</volume><issue>3</issue><spage>382</spage><epage>390</epage><pages>382-390</pages><issn>0915-5635</issn><eissn>1443-1661</eissn><abstract>Background and Aim
Although small‐bowel angioectasia is reported as the most common cause of bleeding in patients and frequently diagnosed by capsule endoscopy (CE) in patients with obscure gastrointestinal bleeding, a computer‐aided detection method has not been established. We developed an artificial intelligence system with deep learning that can automatically detect small‐bowel angioectasia in CE images.
Methods
We trained a deep convolutional neural network (CNN) system based on Single Shot Multibox Detector using 2237 CE images of angioectasia. We assessed its diagnostic accuracy by calculating the area under the receiver operating characteristic curve (ROC‐AUC), sensitivity, specificity, positive predictive value, and negative predictive value using an independent test set of 10 488 small‐bowel images, including 488 images of small‐bowel angioectasia.
Results
The AUC to detect angioectasia was 0.998. Sensitivity, specificity, positive predictive value, and negative predictive value of CNN were 98.8%, 98.4%, 75.4%, and 99.9%, respectively, at a cut‐off value of 0.36 for the probability score.
Conclusions
We developed and validated a new system based on CNN to automatically detect angioectasia in CE images. This may be well applicable to daily clinical practice to reduce the burden of physicians as well as to reduce oversight.</abstract><cop>Australia</cop><pmid>31392767</pmid><doi>10.1111/den.13507</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1652-0743</orcidid><orcidid>https://orcid.org/0000-0003-4314-7777</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0915-5635 |
ispartof | Digestive endoscopy, 2020-03, Vol.32 (3), p.382-390 |
issn | 0915-5635 1443-1661 |
language | eng |
recordid | cdi_proquest_miscellaneous_2270019053 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Aged angioectasia Capsule Endoscopy convolutional neural network Deep Learning Dilatation, Pathologic Female Gastrointestinal Hemorrhage - diagnostic imaging Humans Intestine, Small - diagnostic imaging Intestine, Small - pathology Male Middle Aged Neural Networks, Computer Predictive Value of Tests Retrospective Studies ROC Curve small bowel |
title | Artificial intelligence using a convolutional neural network for automatic detection of small‐bowel angioectasia in capsule endoscopy images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A23%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20using%20a%20convolutional%20neural%20network%20for%20automatic%20detection%20of%20small%E2%80%90bowel%20angioectasia%20in%20capsule%20endoscopy%20images&rft.jtitle=Digestive%20endoscopy&rft.au=Tsuboi,%20Akiyoshi&rft.date=2020-03&rft.volume=32&rft.issue=3&rft.spage=382&rft.epage=390&rft.pages=382-390&rft.issn=0915-5635&rft.eissn=1443-1661&rft_id=info:doi/10.1111/den.13507&rft_dat=%3Cproquest_cross%3E2270019053%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4157-45164cd109e243da24dd11eb4322798ae901d1273be2ebb7f5bac40765de12bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2270019053&rft_id=info:pmid/31392767&rfr_iscdi=true |