Loading…

Artificial intelligence using a convolutional neural network for automatic detection of small‐bowel angioectasia in capsule endoscopy images

Background and Aim Although small‐bowel angioectasia is reported as the most common cause of bleeding in patients and frequently diagnosed by capsule endoscopy (CE) in patients with obscure gastrointestinal bleeding, a computer‐aided detection method has not been established. We developed an artific...

Full description

Saved in:
Bibliographic Details
Published in:Digestive endoscopy 2020-03, Vol.32 (3), p.382-390
Main Authors: Tsuboi, Akiyoshi, Oka, Shiro, Aoyama, Kazuharu, Saito, Hiroaki, Aoki, Tomonori, Yamada, Atsuo, Matsuda, Tomoki, Fujishiro, Mitsuhiro, Ishihara, Soichiro, Nakahori, Masato, Koike, Kazuhiko, Tanaka, Shinji, Tada, Tomohiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4157-45164cd109e243da24dd11eb4322798ae901d1273be2ebb7f5bac40765de12bd3
cites cdi_FETCH-LOGICAL-c4157-45164cd109e243da24dd11eb4322798ae901d1273be2ebb7f5bac40765de12bd3
container_end_page 390
container_issue 3
container_start_page 382
container_title Digestive endoscopy
container_volume 32
creator Tsuboi, Akiyoshi
Oka, Shiro
Aoyama, Kazuharu
Saito, Hiroaki
Aoki, Tomonori
Yamada, Atsuo
Matsuda, Tomoki
Fujishiro, Mitsuhiro
Ishihara, Soichiro
Nakahori, Masato
Koike, Kazuhiko
Tanaka, Shinji
Tada, Tomohiro
description Background and Aim Although small‐bowel angioectasia is reported as the most common cause of bleeding in patients and frequently diagnosed by capsule endoscopy (CE) in patients with obscure gastrointestinal bleeding, a computer‐aided detection method has not been established. We developed an artificial intelligence system with deep learning that can automatically detect small‐bowel angioectasia in CE images. Methods We trained a deep convolutional neural network (CNN) system based on Single Shot Multibox Detector using 2237 CE images of angioectasia. We assessed its diagnostic accuracy by calculating the area under the receiver operating characteristic curve (ROC‐AUC), sensitivity, specificity, positive predictive value, and negative predictive value using an independent test set of 10 488 small‐bowel images, including 488 images of small‐bowel angioectasia. Results The AUC to detect angioectasia was 0.998. Sensitivity, specificity, positive predictive value, and negative predictive value of CNN were 98.8%, 98.4%, 75.4%, and 99.9%, respectively, at a cut‐off value of 0.36 for the probability score. Conclusions We developed and validated a new system based on CNN to automatically detect angioectasia in CE images. This may be well applicable to daily clinical practice to reduce the burden of physicians as well as to reduce oversight.
doi_str_mv 10.1111/den.13507
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2270019053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2270019053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4157-45164cd109e243da24dd11eb4322798ae901d1273be2ebb7f5bac40765de12bd3</originalsourceid><addsrcrecordid>eNp1kMtO3DAUQC1UBFNg0R-ovCyLgK8fSbNEPNpKCDawjhz7ZuTWsad2wmh2fEHVb-RLahjKDm_uwkfHvoeQT8BOoJxTi-EEhGLNDlmAlKKCuoYPZMFaUJWqhdonH3P-yRjwVso9si9AtLypmwX5c5YmNzjjtKcuTOi9W2IwSOfswpJqamJ4iH6eXAwFCTinlzGtY_pFh5ionqc46skZanFC8wzSONA8au-fHv_2cY2e6rB0sVzq7HR5hxq9yrNHisHGbOJqQ92ol5gPye6gfcaj13lA7q8u786_V9e3336cn11XRoJqKqmglsYCa5FLYTWX1gJgLwXnTftVY8vAAm9Ejxz7vhlUr41kTa0sAu-tOCBftt5Vir9nzFM3umzK9jpgnHNXNKVWy5Qo6PEWNSnmnHDoVql8Nm06YN1z_q7k717yF_bzq3buR7Rv5P_eBTjdAmvncfO-qbu4vNkq_wFnOZNM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2270019053</pqid></control><display><type>article</type><title>Artificial intelligence using a convolutional neural network for automatic detection of small‐bowel angioectasia in capsule endoscopy images</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Tsuboi, Akiyoshi ; Oka, Shiro ; Aoyama, Kazuharu ; Saito, Hiroaki ; Aoki, Tomonori ; Yamada, Atsuo ; Matsuda, Tomoki ; Fujishiro, Mitsuhiro ; Ishihara, Soichiro ; Nakahori, Masato ; Koike, Kazuhiko ; Tanaka, Shinji ; Tada, Tomohiro</creator><creatorcontrib>Tsuboi, Akiyoshi ; Oka, Shiro ; Aoyama, Kazuharu ; Saito, Hiroaki ; Aoki, Tomonori ; Yamada, Atsuo ; Matsuda, Tomoki ; Fujishiro, Mitsuhiro ; Ishihara, Soichiro ; Nakahori, Masato ; Koike, Kazuhiko ; Tanaka, Shinji ; Tada, Tomohiro</creatorcontrib><description>Background and Aim Although small‐bowel angioectasia is reported as the most common cause of bleeding in patients and frequently diagnosed by capsule endoscopy (CE) in patients with obscure gastrointestinal bleeding, a computer‐aided detection method has not been established. We developed an artificial intelligence system with deep learning that can automatically detect small‐bowel angioectasia in CE images. Methods We trained a deep convolutional neural network (CNN) system based on Single Shot Multibox Detector using 2237 CE images of angioectasia. We assessed its diagnostic accuracy by calculating the area under the receiver operating characteristic curve (ROC‐AUC), sensitivity, specificity, positive predictive value, and negative predictive value using an independent test set of 10 488 small‐bowel images, including 488 images of small‐bowel angioectasia. Results The AUC to detect angioectasia was 0.998. Sensitivity, specificity, positive predictive value, and negative predictive value of CNN were 98.8%, 98.4%, 75.4%, and 99.9%, respectively, at a cut‐off value of 0.36 for the probability score. Conclusions We developed and validated a new system based on CNN to automatically detect angioectasia in CE images. This may be well applicable to daily clinical practice to reduce the burden of physicians as well as to reduce oversight.</description><identifier>ISSN: 0915-5635</identifier><identifier>EISSN: 1443-1661</identifier><identifier>DOI: 10.1111/den.13507</identifier><identifier>PMID: 31392767</identifier><language>eng</language><publisher>Australia</publisher><subject>Aged ; angioectasia ; Capsule Endoscopy ; convolutional neural network ; Deep Learning ; Dilatation, Pathologic ; Female ; Gastrointestinal Hemorrhage - diagnostic imaging ; Humans ; Intestine, Small - diagnostic imaging ; Intestine, Small - pathology ; Male ; Middle Aged ; Neural Networks, Computer ; Predictive Value of Tests ; Retrospective Studies ; ROC Curve ; small bowel</subject><ispartof>Digestive endoscopy, 2020-03, Vol.32 (3), p.382-390</ispartof><rights>2019 Japan Gastroenterological Endoscopy Society</rights><rights>2019 Japan Gastroenterological Endoscopy Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4157-45164cd109e243da24dd11eb4322798ae901d1273be2ebb7f5bac40765de12bd3</citedby><cites>FETCH-LOGICAL-c4157-45164cd109e243da24dd11eb4322798ae901d1273be2ebb7f5bac40765de12bd3</cites><orcidid>0000-0002-1652-0743 ; 0000-0003-4314-7777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31392767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsuboi, Akiyoshi</creatorcontrib><creatorcontrib>Oka, Shiro</creatorcontrib><creatorcontrib>Aoyama, Kazuharu</creatorcontrib><creatorcontrib>Saito, Hiroaki</creatorcontrib><creatorcontrib>Aoki, Tomonori</creatorcontrib><creatorcontrib>Yamada, Atsuo</creatorcontrib><creatorcontrib>Matsuda, Tomoki</creatorcontrib><creatorcontrib>Fujishiro, Mitsuhiro</creatorcontrib><creatorcontrib>Ishihara, Soichiro</creatorcontrib><creatorcontrib>Nakahori, Masato</creatorcontrib><creatorcontrib>Koike, Kazuhiko</creatorcontrib><creatorcontrib>Tanaka, Shinji</creatorcontrib><creatorcontrib>Tada, Tomohiro</creatorcontrib><title>Artificial intelligence using a convolutional neural network for automatic detection of small‐bowel angioectasia in capsule endoscopy images</title><title>Digestive endoscopy</title><addtitle>Dig Endosc</addtitle><description>Background and Aim Although small‐bowel angioectasia is reported as the most common cause of bleeding in patients and frequently diagnosed by capsule endoscopy (CE) in patients with obscure gastrointestinal bleeding, a computer‐aided detection method has not been established. We developed an artificial intelligence system with deep learning that can automatically detect small‐bowel angioectasia in CE images. Methods We trained a deep convolutional neural network (CNN) system based on Single Shot Multibox Detector using 2237 CE images of angioectasia. We assessed its diagnostic accuracy by calculating the area under the receiver operating characteristic curve (ROC‐AUC), sensitivity, specificity, positive predictive value, and negative predictive value using an independent test set of 10 488 small‐bowel images, including 488 images of small‐bowel angioectasia. Results The AUC to detect angioectasia was 0.998. Sensitivity, specificity, positive predictive value, and negative predictive value of CNN were 98.8%, 98.4%, 75.4%, and 99.9%, respectively, at a cut‐off value of 0.36 for the probability score. Conclusions We developed and validated a new system based on CNN to automatically detect angioectasia in CE images. This may be well applicable to daily clinical practice to reduce the burden of physicians as well as to reduce oversight.</description><subject>Aged</subject><subject>angioectasia</subject><subject>Capsule Endoscopy</subject><subject>convolutional neural network</subject><subject>Deep Learning</subject><subject>Dilatation, Pathologic</subject><subject>Female</subject><subject>Gastrointestinal Hemorrhage - diagnostic imaging</subject><subject>Humans</subject><subject>Intestine, Small - diagnostic imaging</subject><subject>Intestine, Small - pathology</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Neural Networks, Computer</subject><subject>Predictive Value of Tests</subject><subject>Retrospective Studies</subject><subject>ROC Curve</subject><subject>small bowel</subject><issn>0915-5635</issn><issn>1443-1661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtO3DAUQC1UBFNg0R-ovCyLgK8fSbNEPNpKCDawjhz7ZuTWsad2wmh2fEHVb-RLahjKDm_uwkfHvoeQT8BOoJxTi-EEhGLNDlmAlKKCuoYPZMFaUJWqhdonH3P-yRjwVso9si9AtLypmwX5c5YmNzjjtKcuTOi9W2IwSOfswpJqamJ4iH6eXAwFCTinlzGtY_pFh5ionqc46skZanFC8wzSONA8au-fHv_2cY2e6rB0sVzq7HR5hxq9yrNHisHGbOJqQ92ol5gPye6gfcaj13lA7q8u786_V9e3336cn11XRoJqKqmglsYCa5FLYTWX1gJgLwXnTftVY8vAAm9Ejxz7vhlUr41kTa0sAu-tOCBftt5Vir9nzFM3umzK9jpgnHNXNKVWy5Qo6PEWNSnmnHDoVql8Nm06YN1z_q7k717yF_bzq3buR7Rv5P_eBTjdAmvncfO-qbu4vNkq_wFnOZNM</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Tsuboi, Akiyoshi</creator><creator>Oka, Shiro</creator><creator>Aoyama, Kazuharu</creator><creator>Saito, Hiroaki</creator><creator>Aoki, Tomonori</creator><creator>Yamada, Atsuo</creator><creator>Matsuda, Tomoki</creator><creator>Fujishiro, Mitsuhiro</creator><creator>Ishihara, Soichiro</creator><creator>Nakahori, Masato</creator><creator>Koike, Kazuhiko</creator><creator>Tanaka, Shinji</creator><creator>Tada, Tomohiro</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1652-0743</orcidid><orcidid>https://orcid.org/0000-0003-4314-7777</orcidid></search><sort><creationdate>202003</creationdate><title>Artificial intelligence using a convolutional neural network for automatic detection of small‐bowel angioectasia in capsule endoscopy images</title><author>Tsuboi, Akiyoshi ; Oka, Shiro ; Aoyama, Kazuharu ; Saito, Hiroaki ; Aoki, Tomonori ; Yamada, Atsuo ; Matsuda, Tomoki ; Fujishiro, Mitsuhiro ; Ishihara, Soichiro ; Nakahori, Masato ; Koike, Kazuhiko ; Tanaka, Shinji ; Tada, Tomohiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4157-45164cd109e243da24dd11eb4322798ae901d1273be2ebb7f5bac40765de12bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aged</topic><topic>angioectasia</topic><topic>Capsule Endoscopy</topic><topic>convolutional neural network</topic><topic>Deep Learning</topic><topic>Dilatation, Pathologic</topic><topic>Female</topic><topic>Gastrointestinal Hemorrhage - diagnostic imaging</topic><topic>Humans</topic><topic>Intestine, Small - diagnostic imaging</topic><topic>Intestine, Small - pathology</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Neural Networks, Computer</topic><topic>Predictive Value of Tests</topic><topic>Retrospective Studies</topic><topic>ROC Curve</topic><topic>small bowel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsuboi, Akiyoshi</creatorcontrib><creatorcontrib>Oka, Shiro</creatorcontrib><creatorcontrib>Aoyama, Kazuharu</creatorcontrib><creatorcontrib>Saito, Hiroaki</creatorcontrib><creatorcontrib>Aoki, Tomonori</creatorcontrib><creatorcontrib>Yamada, Atsuo</creatorcontrib><creatorcontrib>Matsuda, Tomoki</creatorcontrib><creatorcontrib>Fujishiro, Mitsuhiro</creatorcontrib><creatorcontrib>Ishihara, Soichiro</creatorcontrib><creatorcontrib>Nakahori, Masato</creatorcontrib><creatorcontrib>Koike, Kazuhiko</creatorcontrib><creatorcontrib>Tanaka, Shinji</creatorcontrib><creatorcontrib>Tada, Tomohiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Digestive endoscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsuboi, Akiyoshi</au><au>Oka, Shiro</au><au>Aoyama, Kazuharu</au><au>Saito, Hiroaki</au><au>Aoki, Tomonori</au><au>Yamada, Atsuo</au><au>Matsuda, Tomoki</au><au>Fujishiro, Mitsuhiro</au><au>Ishihara, Soichiro</au><au>Nakahori, Masato</au><au>Koike, Kazuhiko</au><au>Tanaka, Shinji</au><au>Tada, Tomohiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence using a convolutional neural network for automatic detection of small‐bowel angioectasia in capsule endoscopy images</atitle><jtitle>Digestive endoscopy</jtitle><addtitle>Dig Endosc</addtitle><date>2020-03</date><risdate>2020</risdate><volume>32</volume><issue>3</issue><spage>382</spage><epage>390</epage><pages>382-390</pages><issn>0915-5635</issn><eissn>1443-1661</eissn><abstract>Background and Aim Although small‐bowel angioectasia is reported as the most common cause of bleeding in patients and frequently diagnosed by capsule endoscopy (CE) in patients with obscure gastrointestinal bleeding, a computer‐aided detection method has not been established. We developed an artificial intelligence system with deep learning that can automatically detect small‐bowel angioectasia in CE images. Methods We trained a deep convolutional neural network (CNN) system based on Single Shot Multibox Detector using 2237 CE images of angioectasia. We assessed its diagnostic accuracy by calculating the area under the receiver operating characteristic curve (ROC‐AUC), sensitivity, specificity, positive predictive value, and negative predictive value using an independent test set of 10 488 small‐bowel images, including 488 images of small‐bowel angioectasia. Results The AUC to detect angioectasia was 0.998. Sensitivity, specificity, positive predictive value, and negative predictive value of CNN were 98.8%, 98.4%, 75.4%, and 99.9%, respectively, at a cut‐off value of 0.36 for the probability score. Conclusions We developed and validated a new system based on CNN to automatically detect angioectasia in CE images. This may be well applicable to daily clinical practice to reduce the burden of physicians as well as to reduce oversight.</abstract><cop>Australia</cop><pmid>31392767</pmid><doi>10.1111/den.13507</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1652-0743</orcidid><orcidid>https://orcid.org/0000-0003-4314-7777</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0915-5635
ispartof Digestive endoscopy, 2020-03, Vol.32 (3), p.382-390
issn 0915-5635
1443-1661
language eng
recordid cdi_proquest_miscellaneous_2270019053
source Wiley-Blackwell Read & Publish Collection
subjects Aged
angioectasia
Capsule Endoscopy
convolutional neural network
Deep Learning
Dilatation, Pathologic
Female
Gastrointestinal Hemorrhage - diagnostic imaging
Humans
Intestine, Small - diagnostic imaging
Intestine, Small - pathology
Male
Middle Aged
Neural Networks, Computer
Predictive Value of Tests
Retrospective Studies
ROC Curve
small bowel
title Artificial intelligence using a convolutional neural network for automatic detection of small‐bowel angioectasia in capsule endoscopy images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A23%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20using%20a%20convolutional%20neural%20network%20for%20automatic%20detection%20of%20small%E2%80%90bowel%20angioectasia%20in%20capsule%20endoscopy%20images&rft.jtitle=Digestive%20endoscopy&rft.au=Tsuboi,%20Akiyoshi&rft.date=2020-03&rft.volume=32&rft.issue=3&rft.spage=382&rft.epage=390&rft.pages=382-390&rft.issn=0915-5635&rft.eissn=1443-1661&rft_id=info:doi/10.1111/den.13507&rft_dat=%3Cproquest_cross%3E2270019053%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4157-45164cd109e243da24dd11eb4322798ae901d1273be2ebb7f5bac40765de12bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2270019053&rft_id=info:pmid/31392767&rfr_iscdi=true