Loading…

Evaluation of the infiltration of polystyrene nanobeads in zebrafish embryo tissues after short-term exposure and the related biochemical and behavioural effects

One of the current main challenges faced by the scientific community is concerning the fate and toxicity of plastics, due to both the well-known threats made by larger plastic items spreading in ecosystems and their fragmentation into micro- and nanoparticles. Since the chemical and physical charact...

Full description

Saved in:
Bibliographic Details
Published in:Environmental Pollution 2019-11, Vol.254 (Pt A), p.112947-112947, Article 112947
Main Authors: Parenti, Camilla Carla, Ghilardi, Anna, Della Torre, Camilla, Magni, Stefano, Del Giacco, Luca, Binelli, Andrea
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:One of the current main challenges faced by the scientific community is concerning the fate and toxicity of plastics, due to both the well-known threats made by larger plastic items spreading in ecosystems and their fragmentation into micro- and nanoparticles. Since the chemical and physical characteristics of these smaller plastic fragments are markedly different with respect to their bulk product, the potential toxicological effects in the environment need to be deeply investigated. To partially fill this gap of knowledge, the aim of this study was to evaluate the polystyrene nanobead intake in the tissues of zebrafish ( ) embryos and their related toxicity. Embryos at 72 h post fertilization (hpf) were exposed for 48 h to 0.5 μm fluorescent polystyrene nanobeads at a concentration of 1 mg L . Confocal microscopy was employed to investigate nanoplastic ingestion and tissue infiltration, while potential sub-lethal effects were evaluated by measuring several endpoints, which covered the adverse effects at the molecular (protein carbonylation), cellular (P-glycoprotein, activity of several antioxidant/detoxifying enzymes) and organism levels by evaluating of possible changes in the embryos' swimming behaviour. Imaging observations clearly highlighted the nanoplastics' uptake, showing nanobeads not only in the digestive tract, but also migrating to other tissues through the gut epithelium. Biomarker analyses revealed a significant decrease in cyclooxygenase activity and an induction of superoxide dismutase. The behavioural test highlighted a significant (p 
ISSN:0269-7491
1873-6424
DOI:10.1016/j.envpol.2019.07.115