Loading…

High-Speed Efficient Terahertz Modulation Based on Tunable Collective-Individual State Conversion within an Active 3 nm Two-Dimensional Electron Gas Metasurface

Terahertz (THz) modulators are always realized by dynamically manipulating the conversion between different resonant modes within a single unit cell of an active metasurface. In this Letter, to achieve real high-speed THz modulation, we present a staggered netlike two-dimensional electron gas (2DEG)...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2019-11, Vol.19 (11), p.7588-7597
Main Authors: Zhao, Yuncheng, Wang, Lan, Zhang, Yaxin, Qiao, Shen, Liang, Shixiong, Zhou, Tianchi, Zhang, Xilin, Guo, Xiaoqing, Feng, Zhihong, Lan, Feng, Chen, Zhi, Yang, Xiaobo, Yang, Ziqiang
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a348t-7acf48f4654e1f8b6d4e28ab76506a6125378bf1b399781c4d9a3047585363b33
cites cdi_FETCH-LOGICAL-a348t-7acf48f4654e1f8b6d4e28ab76506a6125378bf1b399781c4d9a3047585363b33
container_end_page 7597
container_issue 11
container_start_page 7588
container_title Nano letters
container_volume 19
creator Zhao, Yuncheng
Wang, Lan
Zhang, Yaxin
Qiao, Shen
Liang, Shixiong
Zhou, Tianchi
Zhang, Xilin
Guo, Xiaoqing
Feng, Zhihong
Lan, Feng
Chen, Zhi
Yang, Xiaobo
Yang, Ziqiang
description Terahertz (THz) modulators are always realized by dynamically manipulating the conversion between different resonant modes within a single unit cell of an active metasurface. In this Letter, to achieve real high-speed THz modulation, we present a staggered netlike two-dimensional electron gas (2DEG) nanostructure composite metasurface that has two states: a collective state with massive surface resonant characteristics and an individual state with meta-atom resonant characteristics. By controlling the electron transport of the nanoscale 2DEG with an electrical grid, collective-individual state conversion can be realized in this composite metasurface. Unlike traditional resonant mode conversion confined in meta-units, this state conversion enables the resonant modes to be flexibly distributed throughout the metasurface, leading to a frequency shift of nearly 99% in both the simulated and experimental transmission spectra. Moreover, such a mechanism can effectively suppress parasitic modes and significantly reduce the capacitance of the metasurface. Thereby, this composite metasurface can efficiently control the transmission characteristics of THz waves with high-speed modulations. As a result, 93% modulation depth is observed in the static experiment and modulated sinusoidal signals up to 3 GHz are achieved in the dynamic experiment, while the −3 dB bandwidth can reach up to 1 GHz. This tunable collective-individual state conversion may have great application potential in wireless communication and coded imaging.
doi_str_mv 10.1021/acs.nanolett.9b01273
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2271853246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2271853246</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-7acf48f4654e1f8b6d4e28ab76506a6125378bf1b399781c4d9a3047585363b33</originalsourceid><addsrcrecordid>eNp9kc1u1DAURiMEoqXwBgh5ySaD_5LYyzIMbaVWLDqso5vkmnHlOIPtTAVPw6PiMNMuWflKPue70v2K4j2jK0Y5-wR9XHnwk8OUVrqjjDfiRXHOKkHLWmv-8nlW8qx4E-MDpVSLir4uzgQTWnGlz4s_1_bHrrzfIw5kY4ztLfpEthhghyH9JnfTMDtIdvLkM8QM5WE7e-gckvXkHPbJHrC88YM92GEGR-4TpOXPHzDExXu0aWc9AU8u_8FEED-S7eNUfrEj-oXJ2maJChm_gkjuMEGcg4Ee3xavDLiI707vRfH962a7vi5vv13drC9vSxBSpbKB3khlZF1JZEZ19SCRK-iauqI11IxXolGdYZ3QulGsl4MGQWVTqUrUohPiovh4zN2H6eeMMbWjjT06Bx6nObacNyyzXNYZlUe0D1OMAU27D3aE8KtltF26aXM37VM37ambrH04bZi7EYdn6amMDNAjsOgP0xzyXeL_M_8C7ZWgWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2271853246</pqid></control><display><type>article</type><title>High-Speed Efficient Terahertz Modulation Based on Tunable Collective-Individual State Conversion within an Active 3 nm Two-Dimensional Electron Gas Metasurface</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Zhao, Yuncheng ; Wang, Lan ; Zhang, Yaxin ; Qiao, Shen ; Liang, Shixiong ; Zhou, Tianchi ; Zhang, Xilin ; Guo, Xiaoqing ; Feng, Zhihong ; Lan, Feng ; Chen, Zhi ; Yang, Xiaobo ; Yang, Ziqiang</creator><creatorcontrib>Zhao, Yuncheng ; Wang, Lan ; Zhang, Yaxin ; Qiao, Shen ; Liang, Shixiong ; Zhou, Tianchi ; Zhang, Xilin ; Guo, Xiaoqing ; Feng, Zhihong ; Lan, Feng ; Chen, Zhi ; Yang, Xiaobo ; Yang, Ziqiang</creatorcontrib><description>Terahertz (THz) modulators are always realized by dynamically manipulating the conversion between different resonant modes within a single unit cell of an active metasurface. In this Letter, to achieve real high-speed THz modulation, we present a staggered netlike two-dimensional electron gas (2DEG) nanostructure composite metasurface that has two states: a collective state with massive surface resonant characteristics and an individual state with meta-atom resonant characteristics. By controlling the electron transport of the nanoscale 2DEG with an electrical grid, collective-individual state conversion can be realized in this composite metasurface. Unlike traditional resonant mode conversion confined in meta-units, this state conversion enables the resonant modes to be flexibly distributed throughout the metasurface, leading to a frequency shift of nearly 99% in both the simulated and experimental transmission spectra. Moreover, such a mechanism can effectively suppress parasitic modes and significantly reduce the capacitance of the metasurface. Thereby, this composite metasurface can efficiently control the transmission characteristics of THz waves with high-speed modulations. As a result, 93% modulation depth is observed in the static experiment and modulated sinusoidal signals up to 3 GHz are achieved in the dynamic experiment, while the −3 dB bandwidth can reach up to 1 GHz. This tunable collective-individual state conversion may have great application potential in wireless communication and coded imaging.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.9b01273</identifier><identifier>PMID: 31398289</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2019-11, Vol.19 (11), p.7588-7597</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-7acf48f4654e1f8b6d4e28ab76506a6125378bf1b399781c4d9a3047585363b33</citedby><cites>FETCH-LOGICAL-a348t-7acf48f4654e1f8b6d4e28ab76506a6125378bf1b399781c4d9a3047585363b33</cites><orcidid>0000-0002-0139-828X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31398289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Yuncheng</creatorcontrib><creatorcontrib>Wang, Lan</creatorcontrib><creatorcontrib>Zhang, Yaxin</creatorcontrib><creatorcontrib>Qiao, Shen</creatorcontrib><creatorcontrib>Liang, Shixiong</creatorcontrib><creatorcontrib>Zhou, Tianchi</creatorcontrib><creatorcontrib>Zhang, Xilin</creatorcontrib><creatorcontrib>Guo, Xiaoqing</creatorcontrib><creatorcontrib>Feng, Zhihong</creatorcontrib><creatorcontrib>Lan, Feng</creatorcontrib><creatorcontrib>Chen, Zhi</creatorcontrib><creatorcontrib>Yang, Xiaobo</creatorcontrib><creatorcontrib>Yang, Ziqiang</creatorcontrib><title>High-Speed Efficient Terahertz Modulation Based on Tunable Collective-Individual State Conversion within an Active 3 nm Two-Dimensional Electron Gas Metasurface</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Terahertz (THz) modulators are always realized by dynamically manipulating the conversion between different resonant modes within a single unit cell of an active metasurface. In this Letter, to achieve real high-speed THz modulation, we present a staggered netlike two-dimensional electron gas (2DEG) nanostructure composite metasurface that has two states: a collective state with massive surface resonant characteristics and an individual state with meta-atom resonant characteristics. By controlling the electron transport of the nanoscale 2DEG with an electrical grid, collective-individual state conversion can be realized in this composite metasurface. Unlike traditional resonant mode conversion confined in meta-units, this state conversion enables the resonant modes to be flexibly distributed throughout the metasurface, leading to a frequency shift of nearly 99% in both the simulated and experimental transmission spectra. Moreover, such a mechanism can effectively suppress parasitic modes and significantly reduce the capacitance of the metasurface. Thereby, this composite metasurface can efficiently control the transmission characteristics of THz waves with high-speed modulations. As a result, 93% modulation depth is observed in the static experiment and modulated sinusoidal signals up to 3 GHz are achieved in the dynamic experiment, while the −3 dB bandwidth can reach up to 1 GHz. This tunable collective-individual state conversion may have great application potential in wireless communication and coded imaging.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAURiMEoqXwBgh5ySaD_5LYyzIMbaVWLDqso5vkmnHlOIPtTAVPw6PiMNMuWflKPue70v2K4j2jK0Y5-wR9XHnwk8OUVrqjjDfiRXHOKkHLWmv-8nlW8qx4E-MDpVSLir4uzgQTWnGlz4s_1_bHrrzfIw5kY4ztLfpEthhghyH9JnfTMDtIdvLkM8QM5WE7e-gckvXkHPbJHrC88YM92GEGR-4TpOXPHzDExXu0aWc9AU8u_8FEED-S7eNUfrEj-oXJ2maJChm_gkjuMEGcg4Ee3xavDLiI707vRfH962a7vi5vv13drC9vSxBSpbKB3khlZF1JZEZ19SCRK-iauqI11IxXolGdYZ3QulGsl4MGQWVTqUrUohPiovh4zN2H6eeMMbWjjT06Bx6nObacNyyzXNYZlUe0D1OMAU27D3aE8KtltF26aXM37VM37ambrH04bZi7EYdn6amMDNAjsOgP0xzyXeL_M_8C7ZWgWw</recordid><startdate>20191113</startdate><enddate>20191113</enddate><creator>Zhao, Yuncheng</creator><creator>Wang, Lan</creator><creator>Zhang, Yaxin</creator><creator>Qiao, Shen</creator><creator>Liang, Shixiong</creator><creator>Zhou, Tianchi</creator><creator>Zhang, Xilin</creator><creator>Guo, Xiaoqing</creator><creator>Feng, Zhihong</creator><creator>Lan, Feng</creator><creator>Chen, Zhi</creator><creator>Yang, Xiaobo</creator><creator>Yang, Ziqiang</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0139-828X</orcidid></search><sort><creationdate>20191113</creationdate><title>High-Speed Efficient Terahertz Modulation Based on Tunable Collective-Individual State Conversion within an Active 3 nm Two-Dimensional Electron Gas Metasurface</title><author>Zhao, Yuncheng ; Wang, Lan ; Zhang, Yaxin ; Qiao, Shen ; Liang, Shixiong ; Zhou, Tianchi ; Zhang, Xilin ; Guo, Xiaoqing ; Feng, Zhihong ; Lan, Feng ; Chen, Zhi ; Yang, Xiaobo ; Yang, Ziqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-7acf48f4654e1f8b6d4e28ab76506a6125378bf1b399781c4d9a3047585363b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yuncheng</creatorcontrib><creatorcontrib>Wang, Lan</creatorcontrib><creatorcontrib>Zhang, Yaxin</creatorcontrib><creatorcontrib>Qiao, Shen</creatorcontrib><creatorcontrib>Liang, Shixiong</creatorcontrib><creatorcontrib>Zhou, Tianchi</creatorcontrib><creatorcontrib>Zhang, Xilin</creatorcontrib><creatorcontrib>Guo, Xiaoqing</creatorcontrib><creatorcontrib>Feng, Zhihong</creatorcontrib><creatorcontrib>Lan, Feng</creatorcontrib><creatorcontrib>Chen, Zhi</creatorcontrib><creatorcontrib>Yang, Xiaobo</creatorcontrib><creatorcontrib>Yang, Ziqiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yuncheng</au><au>Wang, Lan</au><au>Zhang, Yaxin</au><au>Qiao, Shen</au><au>Liang, Shixiong</au><au>Zhou, Tianchi</au><au>Zhang, Xilin</au><au>Guo, Xiaoqing</au><au>Feng, Zhihong</au><au>Lan, Feng</au><au>Chen, Zhi</au><au>Yang, Xiaobo</au><au>Yang, Ziqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Speed Efficient Terahertz Modulation Based on Tunable Collective-Individual State Conversion within an Active 3 nm Two-Dimensional Electron Gas Metasurface</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2019-11-13</date><risdate>2019</risdate><volume>19</volume><issue>11</issue><spage>7588</spage><epage>7597</epage><pages>7588-7597</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Terahertz (THz) modulators are always realized by dynamically manipulating the conversion between different resonant modes within a single unit cell of an active metasurface. In this Letter, to achieve real high-speed THz modulation, we present a staggered netlike two-dimensional electron gas (2DEG) nanostructure composite metasurface that has two states: a collective state with massive surface resonant characteristics and an individual state with meta-atom resonant characteristics. By controlling the electron transport of the nanoscale 2DEG with an electrical grid, collective-individual state conversion can be realized in this composite metasurface. Unlike traditional resonant mode conversion confined in meta-units, this state conversion enables the resonant modes to be flexibly distributed throughout the metasurface, leading to a frequency shift of nearly 99% in both the simulated and experimental transmission spectra. Moreover, such a mechanism can effectively suppress parasitic modes and significantly reduce the capacitance of the metasurface. Thereby, this composite metasurface can efficiently control the transmission characteristics of THz waves with high-speed modulations. As a result, 93% modulation depth is observed in the static experiment and modulated sinusoidal signals up to 3 GHz are achieved in the dynamic experiment, while the −3 dB bandwidth can reach up to 1 GHz. This tunable collective-individual state conversion may have great application potential in wireless communication and coded imaging.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31398289</pmid><doi>10.1021/acs.nanolett.9b01273</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0139-828X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2019-11, Vol.19 (11), p.7588-7597
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2271853246
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title High-Speed Efficient Terahertz Modulation Based on Tunable Collective-Individual State Conversion within an Active 3 nm Two-Dimensional Electron Gas Metasurface
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A11%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Speed%20Efficient%20Terahertz%20Modulation%20Based%20on%20Tunable%20Collective-Individual%20State%20Conversion%20within%20an%20Active%203%20nm%20Two-Dimensional%20Electron%20Gas%20Metasurface&rft.jtitle=Nano%20letters&rft.au=Zhao,%20Yuncheng&rft.date=2019-11-13&rft.volume=19&rft.issue=11&rft.spage=7588&rft.epage=7597&rft.pages=7588-7597&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.9b01273&rft_dat=%3Cproquest_cross%3E2271853246%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a348t-7acf48f4654e1f8b6d4e28ab76506a6125378bf1b399781c4d9a3047585363b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2271853246&rft_id=info:pmid/31398289&rfr_iscdi=true