Loading…
High-Speed Efficient Terahertz Modulation Based on Tunable Collective-Individual State Conversion within an Active 3 nm Two-Dimensional Electron Gas Metasurface
Terahertz (THz) modulators are always realized by dynamically manipulating the conversion between different resonant modes within a single unit cell of an active metasurface. In this Letter, to achieve real high-speed THz modulation, we present a staggered netlike two-dimensional electron gas (2DEG)...
Saved in:
Published in: | Nano letters 2019-11, Vol.19 (11), p.7588-7597 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a348t-7acf48f4654e1f8b6d4e28ab76506a6125378bf1b399781c4d9a3047585363b33 |
---|---|
cites | cdi_FETCH-LOGICAL-a348t-7acf48f4654e1f8b6d4e28ab76506a6125378bf1b399781c4d9a3047585363b33 |
container_end_page | 7597 |
container_issue | 11 |
container_start_page | 7588 |
container_title | Nano letters |
container_volume | 19 |
creator | Zhao, Yuncheng Wang, Lan Zhang, Yaxin Qiao, Shen Liang, Shixiong Zhou, Tianchi Zhang, Xilin Guo, Xiaoqing Feng, Zhihong Lan, Feng Chen, Zhi Yang, Xiaobo Yang, Ziqiang |
description | Terahertz (THz) modulators are always realized by dynamically manipulating the conversion between different resonant modes within a single unit cell of an active metasurface. In this Letter, to achieve real high-speed THz modulation, we present a staggered netlike two-dimensional electron gas (2DEG) nanostructure composite metasurface that has two states: a collective state with massive surface resonant characteristics and an individual state with meta-atom resonant characteristics. By controlling the electron transport of the nanoscale 2DEG with an electrical grid, collective-individual state conversion can be realized in this composite metasurface. Unlike traditional resonant mode conversion confined in meta-units, this state conversion enables the resonant modes to be flexibly distributed throughout the metasurface, leading to a frequency shift of nearly 99% in both the simulated and experimental transmission spectra. Moreover, such a mechanism can effectively suppress parasitic modes and significantly reduce the capacitance of the metasurface. Thereby, this composite metasurface can efficiently control the transmission characteristics of THz waves with high-speed modulations. As a result, 93% modulation depth is observed in the static experiment and modulated sinusoidal signals up to 3 GHz are achieved in the dynamic experiment, while the −3 dB bandwidth can reach up to 1 GHz. This tunable collective-individual state conversion may have great application potential in wireless communication and coded imaging. |
doi_str_mv | 10.1021/acs.nanolett.9b01273 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2271853246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2271853246</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-7acf48f4654e1f8b6d4e28ab76506a6125378bf1b399781c4d9a3047585363b33</originalsourceid><addsrcrecordid>eNp9kc1u1DAURiMEoqXwBgh5ySaD_5LYyzIMbaVWLDqso5vkmnHlOIPtTAVPw6PiMNMuWflKPue70v2K4j2jK0Y5-wR9XHnwk8OUVrqjjDfiRXHOKkHLWmv-8nlW8qx4E-MDpVSLir4uzgQTWnGlz4s_1_bHrrzfIw5kY4ztLfpEthhghyH9JnfTMDtIdvLkM8QM5WE7e-gckvXkHPbJHrC88YM92GEGR-4TpOXPHzDExXu0aWc9AU8u_8FEED-S7eNUfrEj-oXJ2maJChm_gkjuMEGcg4Ee3xavDLiI707vRfH962a7vi5vv13drC9vSxBSpbKB3khlZF1JZEZ19SCRK-iauqI11IxXolGdYZ3QulGsl4MGQWVTqUrUohPiovh4zN2H6eeMMbWjjT06Bx6nObacNyyzXNYZlUe0D1OMAU27D3aE8KtltF26aXM37VM37ambrH04bZi7EYdn6amMDNAjsOgP0xzyXeL_M_8C7ZWgWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2271853246</pqid></control><display><type>article</type><title>High-Speed Efficient Terahertz Modulation Based on Tunable Collective-Individual State Conversion within an Active 3 nm Two-Dimensional Electron Gas Metasurface</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Zhao, Yuncheng ; Wang, Lan ; Zhang, Yaxin ; Qiao, Shen ; Liang, Shixiong ; Zhou, Tianchi ; Zhang, Xilin ; Guo, Xiaoqing ; Feng, Zhihong ; Lan, Feng ; Chen, Zhi ; Yang, Xiaobo ; Yang, Ziqiang</creator><creatorcontrib>Zhao, Yuncheng ; Wang, Lan ; Zhang, Yaxin ; Qiao, Shen ; Liang, Shixiong ; Zhou, Tianchi ; Zhang, Xilin ; Guo, Xiaoqing ; Feng, Zhihong ; Lan, Feng ; Chen, Zhi ; Yang, Xiaobo ; Yang, Ziqiang</creatorcontrib><description>Terahertz (THz) modulators are always realized by dynamically manipulating the conversion between different resonant modes within a single unit cell of an active metasurface. In this Letter, to achieve real high-speed THz modulation, we present a staggered netlike two-dimensional electron gas (2DEG) nanostructure composite metasurface that has two states: a collective state with massive surface resonant characteristics and an individual state with meta-atom resonant characteristics. By controlling the electron transport of the nanoscale 2DEG with an electrical grid, collective-individual state conversion can be realized in this composite metasurface. Unlike traditional resonant mode conversion confined in meta-units, this state conversion enables the resonant modes to be flexibly distributed throughout the metasurface, leading to a frequency shift of nearly 99% in both the simulated and experimental transmission spectra. Moreover, such a mechanism can effectively suppress parasitic modes and significantly reduce the capacitance of the metasurface. Thereby, this composite metasurface can efficiently control the transmission characteristics of THz waves with high-speed modulations. As a result, 93% modulation depth is observed in the static experiment and modulated sinusoidal signals up to 3 GHz are achieved in the dynamic experiment, while the −3 dB bandwidth can reach up to 1 GHz. This tunable collective-individual state conversion may have great application potential in wireless communication and coded imaging.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.9b01273</identifier><identifier>PMID: 31398289</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2019-11, Vol.19 (11), p.7588-7597</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-7acf48f4654e1f8b6d4e28ab76506a6125378bf1b399781c4d9a3047585363b33</citedby><cites>FETCH-LOGICAL-a348t-7acf48f4654e1f8b6d4e28ab76506a6125378bf1b399781c4d9a3047585363b33</cites><orcidid>0000-0002-0139-828X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31398289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Yuncheng</creatorcontrib><creatorcontrib>Wang, Lan</creatorcontrib><creatorcontrib>Zhang, Yaxin</creatorcontrib><creatorcontrib>Qiao, Shen</creatorcontrib><creatorcontrib>Liang, Shixiong</creatorcontrib><creatorcontrib>Zhou, Tianchi</creatorcontrib><creatorcontrib>Zhang, Xilin</creatorcontrib><creatorcontrib>Guo, Xiaoqing</creatorcontrib><creatorcontrib>Feng, Zhihong</creatorcontrib><creatorcontrib>Lan, Feng</creatorcontrib><creatorcontrib>Chen, Zhi</creatorcontrib><creatorcontrib>Yang, Xiaobo</creatorcontrib><creatorcontrib>Yang, Ziqiang</creatorcontrib><title>High-Speed Efficient Terahertz Modulation Based on Tunable Collective-Individual State Conversion within an Active 3 nm Two-Dimensional Electron Gas Metasurface</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Terahertz (THz) modulators are always realized by dynamically manipulating the conversion between different resonant modes within a single unit cell of an active metasurface. In this Letter, to achieve real high-speed THz modulation, we present a staggered netlike two-dimensional electron gas (2DEG) nanostructure composite metasurface that has two states: a collective state with massive surface resonant characteristics and an individual state with meta-atom resonant characteristics. By controlling the electron transport of the nanoscale 2DEG with an electrical grid, collective-individual state conversion can be realized in this composite metasurface. Unlike traditional resonant mode conversion confined in meta-units, this state conversion enables the resonant modes to be flexibly distributed throughout the metasurface, leading to a frequency shift of nearly 99% in both the simulated and experimental transmission spectra. Moreover, such a mechanism can effectively suppress parasitic modes and significantly reduce the capacitance of the metasurface. Thereby, this composite metasurface can efficiently control the transmission characteristics of THz waves with high-speed modulations. As a result, 93% modulation depth is observed in the static experiment and modulated sinusoidal signals up to 3 GHz are achieved in the dynamic experiment, while the −3 dB bandwidth can reach up to 1 GHz. This tunable collective-individual state conversion may have great application potential in wireless communication and coded imaging.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAURiMEoqXwBgh5ySaD_5LYyzIMbaVWLDqso5vkmnHlOIPtTAVPw6PiMNMuWflKPue70v2K4j2jK0Y5-wR9XHnwk8OUVrqjjDfiRXHOKkHLWmv-8nlW8qx4E-MDpVSLir4uzgQTWnGlz4s_1_bHrrzfIw5kY4ztLfpEthhghyH9JnfTMDtIdvLkM8QM5WE7e-gckvXkHPbJHrC88YM92GEGR-4TpOXPHzDExXu0aWc9AU8u_8FEED-S7eNUfrEj-oXJ2maJChm_gkjuMEGcg4Ee3xavDLiI707vRfH962a7vi5vv13drC9vSxBSpbKB3khlZF1JZEZ19SCRK-iauqI11IxXolGdYZ3QulGsl4MGQWVTqUrUohPiovh4zN2H6eeMMbWjjT06Bx6nObacNyyzXNYZlUe0D1OMAU27D3aE8KtltF26aXM37VM37ambrH04bZi7EYdn6amMDNAjsOgP0xzyXeL_M_8C7ZWgWw</recordid><startdate>20191113</startdate><enddate>20191113</enddate><creator>Zhao, Yuncheng</creator><creator>Wang, Lan</creator><creator>Zhang, Yaxin</creator><creator>Qiao, Shen</creator><creator>Liang, Shixiong</creator><creator>Zhou, Tianchi</creator><creator>Zhang, Xilin</creator><creator>Guo, Xiaoqing</creator><creator>Feng, Zhihong</creator><creator>Lan, Feng</creator><creator>Chen, Zhi</creator><creator>Yang, Xiaobo</creator><creator>Yang, Ziqiang</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0139-828X</orcidid></search><sort><creationdate>20191113</creationdate><title>High-Speed Efficient Terahertz Modulation Based on Tunable Collective-Individual State Conversion within an Active 3 nm Two-Dimensional Electron Gas Metasurface</title><author>Zhao, Yuncheng ; Wang, Lan ; Zhang, Yaxin ; Qiao, Shen ; Liang, Shixiong ; Zhou, Tianchi ; Zhang, Xilin ; Guo, Xiaoqing ; Feng, Zhihong ; Lan, Feng ; Chen, Zhi ; Yang, Xiaobo ; Yang, Ziqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-7acf48f4654e1f8b6d4e28ab76506a6125378bf1b399781c4d9a3047585363b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yuncheng</creatorcontrib><creatorcontrib>Wang, Lan</creatorcontrib><creatorcontrib>Zhang, Yaxin</creatorcontrib><creatorcontrib>Qiao, Shen</creatorcontrib><creatorcontrib>Liang, Shixiong</creatorcontrib><creatorcontrib>Zhou, Tianchi</creatorcontrib><creatorcontrib>Zhang, Xilin</creatorcontrib><creatorcontrib>Guo, Xiaoqing</creatorcontrib><creatorcontrib>Feng, Zhihong</creatorcontrib><creatorcontrib>Lan, Feng</creatorcontrib><creatorcontrib>Chen, Zhi</creatorcontrib><creatorcontrib>Yang, Xiaobo</creatorcontrib><creatorcontrib>Yang, Ziqiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yuncheng</au><au>Wang, Lan</au><au>Zhang, Yaxin</au><au>Qiao, Shen</au><au>Liang, Shixiong</au><au>Zhou, Tianchi</au><au>Zhang, Xilin</au><au>Guo, Xiaoqing</au><au>Feng, Zhihong</au><au>Lan, Feng</au><au>Chen, Zhi</au><au>Yang, Xiaobo</au><au>Yang, Ziqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Speed Efficient Terahertz Modulation Based on Tunable Collective-Individual State Conversion within an Active 3 nm Two-Dimensional Electron Gas Metasurface</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2019-11-13</date><risdate>2019</risdate><volume>19</volume><issue>11</issue><spage>7588</spage><epage>7597</epage><pages>7588-7597</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Terahertz (THz) modulators are always realized by dynamically manipulating the conversion between different resonant modes within a single unit cell of an active metasurface. In this Letter, to achieve real high-speed THz modulation, we present a staggered netlike two-dimensional electron gas (2DEG) nanostructure composite metasurface that has two states: a collective state with massive surface resonant characteristics and an individual state with meta-atom resonant characteristics. By controlling the electron transport of the nanoscale 2DEG with an electrical grid, collective-individual state conversion can be realized in this composite metasurface. Unlike traditional resonant mode conversion confined in meta-units, this state conversion enables the resonant modes to be flexibly distributed throughout the metasurface, leading to a frequency shift of nearly 99% in both the simulated and experimental transmission spectra. Moreover, such a mechanism can effectively suppress parasitic modes and significantly reduce the capacitance of the metasurface. Thereby, this composite metasurface can efficiently control the transmission characteristics of THz waves with high-speed modulations. As a result, 93% modulation depth is observed in the static experiment and modulated sinusoidal signals up to 3 GHz are achieved in the dynamic experiment, while the −3 dB bandwidth can reach up to 1 GHz. This tunable collective-individual state conversion may have great application potential in wireless communication and coded imaging.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31398289</pmid><doi>10.1021/acs.nanolett.9b01273</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0139-828X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2019-11, Vol.19 (11), p.7588-7597 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_2271853246 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | High-Speed Efficient Terahertz Modulation Based on Tunable Collective-Individual State Conversion within an Active 3 nm Two-Dimensional Electron Gas Metasurface |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A11%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Speed%20Efficient%20Terahertz%20Modulation%20Based%20on%20Tunable%20Collective-Individual%20State%20Conversion%20within%20an%20Active%203%20nm%20Two-Dimensional%20Electron%20Gas%20Metasurface&rft.jtitle=Nano%20letters&rft.au=Zhao,%20Yuncheng&rft.date=2019-11-13&rft.volume=19&rft.issue=11&rft.spage=7588&rft.epage=7597&rft.pages=7588-7597&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.9b01273&rft_dat=%3Cproquest_cross%3E2271853246%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a348t-7acf48f4654e1f8b6d4e28ab76506a6125378bf1b399781c4d9a3047585363b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2271853246&rft_id=info:pmid/31398289&rfr_iscdi=true |