Loading…
3D graphene network encapsulating SnO2 hollow spheres as a high-performance anode material for lithium-ion batteries
Herein, we report a reliable method for the synthesis of nanohybrids with interconnected networks of reduced graphene oxide (rGO) enwrapping hollow SnO2 nanospheres (H-SnO2[at]rGO), which is implemented by an electrostatic assembly process between positively charged hollow SnO2 nanospheres and negat...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2017-02, Vol.5 (9), p.4535-4542 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4542 |
container_issue | 9 |
container_start_page | 4535 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 5 |
creator | Hu, Xiang Zeng, Guang Chen, Junxiang Lu, Canzhong Wen, Zhenhai |
description | Herein, we report a reliable method for the synthesis of nanohybrids with interconnected networks of reduced graphene oxide (rGO) enwrapping hollow SnO2 nanospheres (H-SnO2[at]rGO), which is implemented by an electrostatic assembly process between positively charged hollow SnO2 nanospheres and negatively charged rGO. Systematic characterizations demonstrate that the as-developed H-SnO2[at]rGO has a unique three-dimensional (3D) nanostructure with favorable features for lithium ions storage, which not only provides robust protection against the aggregation and volume changes of the SnO2 nanospheres, but also ensures high transport kinetics for both electrons and lithium ions. The as-developed H-SnO2[at]rGO exhibits an outstanding electrochemical performance as an anode material for lithium-ion batteries, showing a high reversible capacity of 1107 mA h g-1 after 100 cycles at a current density of 0.1 A g-1 and maintaining 552 mA h g-1 over 500 cycles at a current density up to 1 A g-1. |
doi_str_mv | 10.1039/c6ta10301d |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2271854577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1877843572</sourcerecordid><originalsourceid>FETCH-LOGICAL-g295t-f39795f2fa9ccd092f19ee819d5f56632699a3d551d3cbb01b4708e0f0ac92f83</originalsourceid><addsrcrecordid>eNqNj01LxDAQhoMouOhe_AU5eqnmo2mSo6yfsLAH9byk6aSttkltUvbvG1G86vDCvMw8vMMgdEHJFSVcX9sqmWwIbY7QihFBClnq6vjXK3WK1jG-kVyKkErrFUr8FrezmTrwgD2kQ5jfMXhrprgMJvW-xc9-x3AXhiEccMzgDBGbLNz1bVdMMLswj8ZbwMaHBvBoEsy9GXCe46FPXb-MRR88rk362kA8RyfODBHWP_0Mvd7fvWwei-3u4Wlzsy1apkUqHNdSC8ec0dY2RDNHNYCiuhFOVBVn-QPDGyFow21dE1qXkiggjhibYcXP0OV37jSHjwVi2o99tDAMxkNY4p4xSZUohZR_olSpkjKej_8DlVKVXEjGPwEGenw_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1877843572</pqid></control><display><type>article</type><title>3D graphene network encapsulating SnO2 hollow spheres as a high-performance anode material for lithium-ion batteries</title><source>Royal Society of Chemistry</source><creator>Hu, Xiang ; Zeng, Guang ; Chen, Junxiang ; Lu, Canzhong ; Wen, Zhenhai</creator><creatorcontrib>Hu, Xiang ; Zeng, Guang ; Chen, Junxiang ; Lu, Canzhong ; Wen, Zhenhai</creatorcontrib><description>Herein, we report a reliable method for the synthesis of nanohybrids with interconnected networks of reduced graphene oxide (rGO) enwrapping hollow SnO2 nanospheres (H-SnO2[at]rGO), which is implemented by an electrostatic assembly process between positively charged hollow SnO2 nanospheres and negatively charged rGO. Systematic characterizations demonstrate that the as-developed H-SnO2[at]rGO has a unique three-dimensional (3D) nanostructure with favorable features for lithium ions storage, which not only provides robust protection against the aggregation and volume changes of the SnO2 nanospheres, but also ensures high transport kinetics for both electrons and lithium ions. The as-developed H-SnO2[at]rGO exhibits an outstanding electrochemical performance as an anode material for lithium-ion batteries, showing a high reversible capacity of 1107 mA h g-1 after 100 cycles at a current density of 0.1 A g-1 and maintaining 552 mA h g-1 over 500 cycles at a current density up to 1 A g-1.</description><identifier>ISSN: 2050-7488</identifier><identifier>ISSN: 2050-7496</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c6ta10301d</identifier><language>eng</language><subject>anodes ; Current density ; electrochemistry ; electrons ; encapsulation ; Graphene ; graphene oxide ; ions ; lithium ; lithium batteries ; Lithium-ion batteries ; nanohybrids ; Nanospheres ; Nanostructure ; Networks ; physiological transport ; Rechargeable batteries ; Tin dioxide</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2017-02, Vol.5 (9), p.4535-4542</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hu, Xiang</creatorcontrib><creatorcontrib>Zeng, Guang</creatorcontrib><creatorcontrib>Chen, Junxiang</creatorcontrib><creatorcontrib>Lu, Canzhong</creatorcontrib><creatorcontrib>Wen, Zhenhai</creatorcontrib><title>3D graphene network encapsulating SnO2 hollow spheres as a high-performance anode material for lithium-ion batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Herein, we report a reliable method for the synthesis of nanohybrids with interconnected networks of reduced graphene oxide (rGO) enwrapping hollow SnO2 nanospheres (H-SnO2[at]rGO), which is implemented by an electrostatic assembly process between positively charged hollow SnO2 nanospheres and negatively charged rGO. Systematic characterizations demonstrate that the as-developed H-SnO2[at]rGO has a unique three-dimensional (3D) nanostructure with favorable features for lithium ions storage, which not only provides robust protection against the aggregation and volume changes of the SnO2 nanospheres, but also ensures high transport kinetics for both electrons and lithium ions. The as-developed H-SnO2[at]rGO exhibits an outstanding electrochemical performance as an anode material for lithium-ion batteries, showing a high reversible capacity of 1107 mA h g-1 after 100 cycles at a current density of 0.1 A g-1 and maintaining 552 mA h g-1 over 500 cycles at a current density up to 1 A g-1.</description><subject>anodes</subject><subject>Current density</subject><subject>electrochemistry</subject><subject>electrons</subject><subject>encapsulation</subject><subject>Graphene</subject><subject>graphene oxide</subject><subject>ions</subject><subject>lithium</subject><subject>lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>nanohybrids</subject><subject>Nanospheres</subject><subject>Nanostructure</subject><subject>Networks</subject><subject>physiological transport</subject><subject>Rechargeable batteries</subject><subject>Tin dioxide</subject><issn>2050-7488</issn><issn>2050-7496</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNj01LxDAQhoMouOhe_AU5eqnmo2mSo6yfsLAH9byk6aSttkltUvbvG1G86vDCvMw8vMMgdEHJFSVcX9sqmWwIbY7QihFBClnq6vjXK3WK1jG-kVyKkErrFUr8FrezmTrwgD2kQ5jfMXhrprgMJvW-xc9-x3AXhiEccMzgDBGbLNz1bVdMMLswj8ZbwMaHBvBoEsy9GXCe46FPXb-MRR88rk362kA8RyfODBHWP_0Mvd7fvWwei-3u4Wlzsy1apkUqHNdSC8ec0dY2RDNHNYCiuhFOVBVn-QPDGyFow21dE1qXkiggjhibYcXP0OV37jSHjwVi2o99tDAMxkNY4p4xSZUohZR_olSpkjKej_8DlVKVXEjGPwEGenw_</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Hu, Xiang</creator><creator>Zeng, Guang</creator><creator>Chen, Junxiang</creator><creator>Lu, Canzhong</creator><creator>Wen, Zhenhai</creator><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20170201</creationdate><title>3D graphene network encapsulating SnO2 hollow spheres as a high-performance anode material for lithium-ion batteries</title><author>Hu, Xiang ; Zeng, Guang ; Chen, Junxiang ; Lu, Canzhong ; Wen, Zhenhai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g295t-f39795f2fa9ccd092f19ee819d5f56632699a3d551d3cbb01b4708e0f0ac92f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>anodes</topic><topic>Current density</topic><topic>electrochemistry</topic><topic>electrons</topic><topic>encapsulation</topic><topic>Graphene</topic><topic>graphene oxide</topic><topic>ions</topic><topic>lithium</topic><topic>lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>nanohybrids</topic><topic>Nanospheres</topic><topic>Nanostructure</topic><topic>Networks</topic><topic>physiological transport</topic><topic>Rechargeable batteries</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Xiang</creatorcontrib><creatorcontrib>Zeng, Guang</creatorcontrib><creatorcontrib>Chen, Junxiang</creatorcontrib><creatorcontrib>Lu, Canzhong</creatorcontrib><creatorcontrib>Wen, Zhenhai</creatorcontrib><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Xiang</au><au>Zeng, Guang</au><au>Chen, Junxiang</au><au>Lu, Canzhong</au><au>Wen, Zhenhai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D graphene network encapsulating SnO2 hollow spheres as a high-performance anode material for lithium-ion batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2017-02-01</date><risdate>2017</risdate><volume>5</volume><issue>9</issue><spage>4535</spage><epage>4542</epage><pages>4535-4542</pages><issn>2050-7488</issn><issn>2050-7496</issn><eissn>2050-7496</eissn><abstract>Herein, we report a reliable method for the synthesis of nanohybrids with interconnected networks of reduced graphene oxide (rGO) enwrapping hollow SnO2 nanospheres (H-SnO2[at]rGO), which is implemented by an electrostatic assembly process between positively charged hollow SnO2 nanospheres and negatively charged rGO. Systematic characterizations demonstrate that the as-developed H-SnO2[at]rGO has a unique three-dimensional (3D) nanostructure with favorable features for lithium ions storage, which not only provides robust protection against the aggregation and volume changes of the SnO2 nanospheres, but also ensures high transport kinetics for both electrons and lithium ions. The as-developed H-SnO2[at]rGO exhibits an outstanding electrochemical performance as an anode material for lithium-ion batteries, showing a high reversible capacity of 1107 mA h g-1 after 100 cycles at a current density of 0.1 A g-1 and maintaining 552 mA h g-1 over 500 cycles at a current density up to 1 A g-1.</abstract><doi>10.1039/c6ta10301d</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2017-02, Vol.5 (9), p.4535-4542 |
issn | 2050-7488 2050-7496 2050-7496 |
language | eng |
recordid | cdi_proquest_miscellaneous_2271854577 |
source | Royal Society of Chemistry |
subjects | anodes Current density electrochemistry electrons encapsulation Graphene graphene oxide ions lithium lithium batteries Lithium-ion batteries nanohybrids Nanospheres Nanostructure Networks physiological transport Rechargeable batteries Tin dioxide |
title | 3D graphene network encapsulating SnO2 hollow spheres as a high-performance anode material for lithium-ion batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20graphene%20network%20encapsulating%20SnO2%20hollow%20spheres%20as%20a%20high-performance%20anode%20material%20for%20lithium-ion%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Hu,%20Xiang&rft.date=2017-02-01&rft.volume=5&rft.issue=9&rft.spage=4535&rft.epage=4542&rft.pages=4535-4542&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c6ta10301d&rft_dat=%3Cproquest%3E1877843572%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g295t-f39795f2fa9ccd092f19ee819d5f56632699a3d551d3cbb01b4708e0f0ac92f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1877843572&rft_id=info:pmid/&rfr_iscdi=true |