Loading…

3D graphene network encapsulating SnO2 hollow spheres as a high-performance anode material for lithium-ion batteries

Herein, we report a reliable method for the synthesis of nanohybrids with interconnected networks of reduced graphene oxide (rGO) enwrapping hollow SnO2 nanospheres (H-SnO2[at]rGO), which is implemented by an electrostatic assembly process between positively charged hollow SnO2 nanospheres and negat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2017-02, Vol.5 (9), p.4535-4542
Main Authors: Hu, Xiang, Zeng, Guang, Chen, Junxiang, Lu, Canzhong, Wen, Zhenhai
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4542
container_issue 9
container_start_page 4535
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 5
creator Hu, Xiang
Zeng, Guang
Chen, Junxiang
Lu, Canzhong
Wen, Zhenhai
description Herein, we report a reliable method for the synthesis of nanohybrids with interconnected networks of reduced graphene oxide (rGO) enwrapping hollow SnO2 nanospheres (H-SnO2[at]rGO), which is implemented by an electrostatic assembly process between positively charged hollow SnO2 nanospheres and negatively charged rGO. Systematic characterizations demonstrate that the as-developed H-SnO2[at]rGO has a unique three-dimensional (3D) nanostructure with favorable features for lithium ions storage, which not only provides robust protection against the aggregation and volume changes of the SnO2 nanospheres, but also ensures high transport kinetics for both electrons and lithium ions. The as-developed H-SnO2[at]rGO exhibits an outstanding electrochemical performance as an anode material for lithium-ion batteries, showing a high reversible capacity of 1107 mA h g-1 after 100 cycles at a current density of 0.1 A g-1 and maintaining 552 mA h g-1 over 500 cycles at a current density up to 1 A g-1.
doi_str_mv 10.1039/c6ta10301d
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2271854577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1877843572</sourcerecordid><originalsourceid>FETCH-LOGICAL-g295t-f39795f2fa9ccd092f19ee819d5f56632699a3d551d3cbb01b4708e0f0ac92f83</originalsourceid><addsrcrecordid>eNqNj01LxDAQhoMouOhe_AU5eqnmo2mSo6yfsLAH9byk6aSttkltUvbvG1G86vDCvMw8vMMgdEHJFSVcX9sqmWwIbY7QihFBClnq6vjXK3WK1jG-kVyKkErrFUr8FrezmTrwgD2kQ5jfMXhrprgMJvW-xc9-x3AXhiEccMzgDBGbLNz1bVdMMLswj8ZbwMaHBvBoEsy9GXCe46FPXb-MRR88rk362kA8RyfODBHWP_0Mvd7fvWwei-3u4Wlzsy1apkUqHNdSC8ec0dY2RDNHNYCiuhFOVBVn-QPDGyFow21dE1qXkiggjhibYcXP0OV37jSHjwVi2o99tDAMxkNY4p4xSZUohZR_olSpkjKej_8DlVKVXEjGPwEGenw_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1877843572</pqid></control><display><type>article</type><title>3D graphene network encapsulating SnO2 hollow spheres as a high-performance anode material for lithium-ion batteries</title><source>Royal Society of Chemistry</source><creator>Hu, Xiang ; Zeng, Guang ; Chen, Junxiang ; Lu, Canzhong ; Wen, Zhenhai</creator><creatorcontrib>Hu, Xiang ; Zeng, Guang ; Chen, Junxiang ; Lu, Canzhong ; Wen, Zhenhai</creatorcontrib><description>Herein, we report a reliable method for the synthesis of nanohybrids with interconnected networks of reduced graphene oxide (rGO) enwrapping hollow SnO2 nanospheres (H-SnO2[at]rGO), which is implemented by an electrostatic assembly process between positively charged hollow SnO2 nanospheres and negatively charged rGO. Systematic characterizations demonstrate that the as-developed H-SnO2[at]rGO has a unique three-dimensional (3D) nanostructure with favorable features for lithium ions storage, which not only provides robust protection against the aggregation and volume changes of the SnO2 nanospheres, but also ensures high transport kinetics for both electrons and lithium ions. The as-developed H-SnO2[at]rGO exhibits an outstanding electrochemical performance as an anode material for lithium-ion batteries, showing a high reversible capacity of 1107 mA h g-1 after 100 cycles at a current density of 0.1 A g-1 and maintaining 552 mA h g-1 over 500 cycles at a current density up to 1 A g-1.</description><identifier>ISSN: 2050-7488</identifier><identifier>ISSN: 2050-7496</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c6ta10301d</identifier><language>eng</language><subject>anodes ; Current density ; electrochemistry ; electrons ; encapsulation ; Graphene ; graphene oxide ; ions ; lithium ; lithium batteries ; Lithium-ion batteries ; nanohybrids ; Nanospheres ; Nanostructure ; Networks ; physiological transport ; Rechargeable batteries ; Tin dioxide</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2017-02, Vol.5 (9), p.4535-4542</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hu, Xiang</creatorcontrib><creatorcontrib>Zeng, Guang</creatorcontrib><creatorcontrib>Chen, Junxiang</creatorcontrib><creatorcontrib>Lu, Canzhong</creatorcontrib><creatorcontrib>Wen, Zhenhai</creatorcontrib><title>3D graphene network encapsulating SnO2 hollow spheres as a high-performance anode material for lithium-ion batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Herein, we report a reliable method for the synthesis of nanohybrids with interconnected networks of reduced graphene oxide (rGO) enwrapping hollow SnO2 nanospheres (H-SnO2[at]rGO), which is implemented by an electrostatic assembly process between positively charged hollow SnO2 nanospheres and negatively charged rGO. Systematic characterizations demonstrate that the as-developed H-SnO2[at]rGO has a unique three-dimensional (3D) nanostructure with favorable features for lithium ions storage, which not only provides robust protection against the aggregation and volume changes of the SnO2 nanospheres, but also ensures high transport kinetics for both electrons and lithium ions. The as-developed H-SnO2[at]rGO exhibits an outstanding electrochemical performance as an anode material for lithium-ion batteries, showing a high reversible capacity of 1107 mA h g-1 after 100 cycles at a current density of 0.1 A g-1 and maintaining 552 mA h g-1 over 500 cycles at a current density up to 1 A g-1.</description><subject>anodes</subject><subject>Current density</subject><subject>electrochemistry</subject><subject>electrons</subject><subject>encapsulation</subject><subject>Graphene</subject><subject>graphene oxide</subject><subject>ions</subject><subject>lithium</subject><subject>lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>nanohybrids</subject><subject>Nanospheres</subject><subject>Nanostructure</subject><subject>Networks</subject><subject>physiological transport</subject><subject>Rechargeable batteries</subject><subject>Tin dioxide</subject><issn>2050-7488</issn><issn>2050-7496</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNj01LxDAQhoMouOhe_AU5eqnmo2mSo6yfsLAH9byk6aSttkltUvbvG1G86vDCvMw8vMMgdEHJFSVcX9sqmWwIbY7QihFBClnq6vjXK3WK1jG-kVyKkErrFUr8FrezmTrwgD2kQ5jfMXhrprgMJvW-xc9-x3AXhiEccMzgDBGbLNz1bVdMMLswj8ZbwMaHBvBoEsy9GXCe46FPXb-MRR88rk362kA8RyfODBHWP_0Mvd7fvWwei-3u4Wlzsy1apkUqHNdSC8ec0dY2RDNHNYCiuhFOVBVn-QPDGyFow21dE1qXkiggjhibYcXP0OV37jSHjwVi2o99tDAMxkNY4p4xSZUohZR_olSpkjKej_8DlVKVXEjGPwEGenw_</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Hu, Xiang</creator><creator>Zeng, Guang</creator><creator>Chen, Junxiang</creator><creator>Lu, Canzhong</creator><creator>Wen, Zhenhai</creator><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20170201</creationdate><title>3D graphene network encapsulating SnO2 hollow spheres as a high-performance anode material for lithium-ion batteries</title><author>Hu, Xiang ; Zeng, Guang ; Chen, Junxiang ; Lu, Canzhong ; Wen, Zhenhai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g295t-f39795f2fa9ccd092f19ee819d5f56632699a3d551d3cbb01b4708e0f0ac92f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>anodes</topic><topic>Current density</topic><topic>electrochemistry</topic><topic>electrons</topic><topic>encapsulation</topic><topic>Graphene</topic><topic>graphene oxide</topic><topic>ions</topic><topic>lithium</topic><topic>lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>nanohybrids</topic><topic>Nanospheres</topic><topic>Nanostructure</topic><topic>Networks</topic><topic>physiological transport</topic><topic>Rechargeable batteries</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Xiang</creatorcontrib><creatorcontrib>Zeng, Guang</creatorcontrib><creatorcontrib>Chen, Junxiang</creatorcontrib><creatorcontrib>Lu, Canzhong</creatorcontrib><creatorcontrib>Wen, Zhenhai</creatorcontrib><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Xiang</au><au>Zeng, Guang</au><au>Chen, Junxiang</au><au>Lu, Canzhong</au><au>Wen, Zhenhai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D graphene network encapsulating SnO2 hollow spheres as a high-performance anode material for lithium-ion batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2017-02-01</date><risdate>2017</risdate><volume>5</volume><issue>9</issue><spage>4535</spage><epage>4542</epage><pages>4535-4542</pages><issn>2050-7488</issn><issn>2050-7496</issn><eissn>2050-7496</eissn><abstract>Herein, we report a reliable method for the synthesis of nanohybrids with interconnected networks of reduced graphene oxide (rGO) enwrapping hollow SnO2 nanospheres (H-SnO2[at]rGO), which is implemented by an electrostatic assembly process between positively charged hollow SnO2 nanospheres and negatively charged rGO. Systematic characterizations demonstrate that the as-developed H-SnO2[at]rGO has a unique three-dimensional (3D) nanostructure with favorable features for lithium ions storage, which not only provides robust protection against the aggregation and volume changes of the SnO2 nanospheres, but also ensures high transport kinetics for both electrons and lithium ions. The as-developed H-SnO2[at]rGO exhibits an outstanding electrochemical performance as an anode material for lithium-ion batteries, showing a high reversible capacity of 1107 mA h g-1 after 100 cycles at a current density of 0.1 A g-1 and maintaining 552 mA h g-1 over 500 cycles at a current density up to 1 A g-1.</abstract><doi>10.1039/c6ta10301d</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2017-02, Vol.5 (9), p.4535-4542
issn 2050-7488
2050-7496
2050-7496
language eng
recordid cdi_proquest_miscellaneous_2271854577
source Royal Society of Chemistry
subjects anodes
Current density
electrochemistry
electrons
encapsulation
Graphene
graphene oxide
ions
lithium
lithium batteries
Lithium-ion batteries
nanohybrids
Nanospheres
Nanostructure
Networks
physiological transport
Rechargeable batteries
Tin dioxide
title 3D graphene network encapsulating SnO2 hollow spheres as a high-performance anode material for lithium-ion batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20graphene%20network%20encapsulating%20SnO2%20hollow%20spheres%20as%20a%20high-performance%20anode%20material%20for%20lithium-ion%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Hu,%20Xiang&rft.date=2017-02-01&rft.volume=5&rft.issue=9&rft.spage=4535&rft.epage=4542&rft.pages=4535-4542&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c6ta10301d&rft_dat=%3Cproquest%3E1877843572%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g295t-f39795f2fa9ccd092f19ee819d5f56632699a3d551d3cbb01b4708e0f0ac92f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1877843572&rft_id=info:pmid/&rfr_iscdi=true