Loading…

Fractionation of Adipose Tissue Procedure With a Disposable One-Hole Fractionator

Abstract Background Adipose tissue has been widely used in regenerative surgery for its therapeutic potential. This potential is often ascribed to the stromal vascular fraction (SVF), which can be mechanically isolated. Mechanical isolation results in an SVF that retains intact cell-cell communicati...

Full description

Saved in:
Bibliographic Details
Published in:Aesthetic surgery journal 2020-03, Vol.40 (4), p.194-201
Main Authors: Van Dongen, Joris A, Gostelie, Olivier F E, Vonk, Lucienne A, De Bruijn, Julia J, Van Der Lei, Berend, Harmsen, Martin C, Stevens, Hieronymus P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background Adipose tissue has been widely used in regenerative surgery for its therapeutic potential. This potential is often ascribed to the stromal vascular fraction (SVF), which can be mechanically isolated. Mechanical isolation results in an SVF that retains intact cell-cell communication including extracellular matrix and is therefore named tissue-SVF (tSVF). Objectives The aim of this study was to evaluate a new disposable 1-hole fractionator for fractionation of adipose tissue (FAT), and compare this new device with the existing reusable 3-hole fractionator. Methods The composition of tSVF obtained via the 1-hole fractionator was histologically and histochemically compared to unprocessed adipose tissue. The number of viable nuclear cells in tSVF obtained by the 1-hole and 3-hole fractionators as well as unprocessed adipose tissue were compared after enzymatic isolation and tested for colony-forming capacity. Flow cytometry was used to compare different cell compositions based on surface marker expression between tSVF isolated by the two types of fractionators. Results Fractionation of adipose tissue with the 1-hole fractionator condenses vasculature and extracellular matrix by disrupting adipocytes. The number of viable nuclear cells in tSVF obtained with the two fractionators was comparable and significantly higher than unprocessed lipoaspirate. Furthermore, tSVF isolated by both fractionators showed similar cell compositions and comparable colony-forming capacities. Conclusions FAT with a disposable 1-hole fractionator effectively isolates tSVF with a cell count and cell composition comparable to the fraction obtained with the 3-hole reusable fractionator. The disposable 1-hole fractionator, however, is safer and more user friendly.
ISSN:1090-820X
1527-330X
DOI:10.1093/asj/sjz223