Loading…

Biochemical characterization and low-resolution SAXS shape of a novel GH11 exo-1,4-β-xylanase identified in a microbial consortium

Biotechnologies that aim to produce renewable fuels, chemicals, and bioproducts from residual ligno(hemi)cellulosic biomass mostly rely on enzymatic depolymerization of plant cell walls (PCW). This process requires an arsenal of diverse enzymes, including xylanases, which synergistically act on the...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2019-10, Vol.103 (19), p.8035-8049
Main Authors: Evangelista, Danilo Elton, de Oliveira Arnoldi Pellegrini, Vanessa, Santo, Melissa Espirito, McQueen-Mason, Simon, Bruce, Neil C., Polikarpov, Igor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Biotechnologies that aim to produce renewable fuels, chemicals, and bioproducts from residual ligno(hemi)cellulosic biomass mostly rely on enzymatic depolymerization of plant cell walls (PCW). This process requires an arsenal of diverse enzymes, including xylanases, which synergistically act on the hemicellulose, reducing the long and complex xylan chains to oligomers and simple sugars. Thus, xylanases play a crucial role in PCW depolymerization. Until recently, the largest xylanase family, glycoside hydrolase family 11 (GH11) has been exclusively represented by endo-catalytic β-1,4- and β-1,3-xylanases. Analysis of a metatranscriptome library from a microbial lignocellulose community resulted in the identification of an unusual exo-acting GH11 β-1,4-xylanase (MetXyn11). Detailed characterization has been performed on recombinant MetXyn11 including determination of its low-resolution small-angle X-ray scattering (SAXS) molecular envelope in solution. Our results reveal that MetXyn11 is a monomeric globular enzyme that liberates xylobiose from heteroxylans as the only product. MetXyn11 has an optimal activity in a pH range from 6 to 9 and an optimal temperature of 50 °C. The enzyme maintained above 65% of its original activity in the pH range 5 to 6 after being incubated for 72 h at 50 °C. Addition of the enzyme to a commercial enzymatic cocktail (CelicCtec3) promoted a significant increase of enzymatic hydrolysis yields of hydrothermally pretreated sugarcane bagasse (16% after 24 h of hydrolysis).
ISSN:0175-7598
1432-0614
DOI:10.1007/s00253-019-10033-8