Loading…

Type 8 long QT syndrome: pathogenic variants in CACNA1C-encoded Cav1.2 cluster in STAC protein binding site

Abstract Aims Pathogenic gain-of-function variants in CACAN1C cause type-8 long QT syndrome (LQT8). We sought to describe the electrocardiographic features in LQT8 and utilize molecular modelling to gain mechanistic insights into its genetic culprits. Methods and results Rare variants in CACNA1C wer...

Full description

Saved in:
Bibliographic Details
Published in:Europace (London, England) England), 2019-11, Vol.21 (11), p.1725-1732
Main Authors: Mellor, Greg J, Panwar, Pankaj, Lee, Andrea K, Steinberg, Christian, Hathaway, Julie A, Bartels, Kirsten, Christian, Susan, Balaji, Seshadri, Roberts, Jason D, Simpson, Chris S, Boczek, Nicole J, Tester, David J, Radbill, Andrew E, Mok, Ngai-Shing, Hamilton, Robert M, Kaufman, Elizabeth S, Eugenio, Paul L, Weiss, Raul, January, Craig, McDaniel, George M, Leather, Richard A, Erickson, Christopher, Falik, Shelley, Behr, Elijah R, Wilde, Arthur A M, Sanatani, Shubhayan, Ackerman, Michael J, Van Petegem, Filip, Krahn, Andrew D, Laksman, Zachary
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c439t-d974e230b0c7845b9ebfdb4db5a3ddade5000bafec48963d10ac54199ece65513
cites cdi_FETCH-LOGICAL-c439t-d974e230b0c7845b9ebfdb4db5a3ddade5000bafec48963d10ac54199ece65513
container_end_page 1732
container_issue 11
container_start_page 1725
container_title Europace (London, England)
container_volume 21
creator Mellor, Greg J
Panwar, Pankaj
Lee, Andrea K
Steinberg, Christian
Hathaway, Julie A
Bartels, Kirsten
Christian, Susan
Balaji, Seshadri
Roberts, Jason D
Simpson, Chris S
Boczek, Nicole J
Tester, David J
Radbill, Andrew E
Mok, Ngai-Shing
Hamilton, Robert M
Kaufman, Elizabeth S
Eugenio, Paul L
Weiss, Raul
January, Craig
McDaniel, George M
Leather, Richard A
Erickson, Christopher
Falik, Shelley
Behr, Elijah R
Wilde, Arthur A M
Sanatani, Shubhayan
Ackerman, Michael J
Van Petegem, Filip
Krahn, Andrew D
Laksman, Zachary
description Abstract Aims Pathogenic gain-of-function variants in CACAN1C cause type-8 long QT syndrome (LQT8). We sought to describe the electrocardiographic features in LQT8 and utilize molecular modelling to gain mechanistic insights into its genetic culprits. Methods and results Rare variants in CACNA1C were identified from genetic testing laboratories. Treating physicians provided clinical information. Variant pathogenicity was independently assessed according to recent guidelines. Pathogenic (P) and likely pathogenic (LP) variants were mapped onto a 3D modelled structure of the Cav1.2 protein. Nine P/LP variants, identified in 23 patients from 19 families with non-syndromic LQTS were identified. Six variants, found in 79% of families, clustered to a 4-residue section in the cytosolic II–III loop region which forms a region capable of binding STAC SH3 domains. Therefore, variants may affect binding of SH3-domain containing proteins. Arrhythmic events occurred in similar proportions of patients with II–III loop variants and with other P/LP variants (53% vs. 48%, P = 0.41) despite shorter QTc intervals (477 ± 31 ms vs. 515 ± 37 ms, P = 0.03). A history of sudden death was reported only in families with II–III loop variants (60% vs. 0%, P = 0.03). The predominant T-wave morphology was a late peaking T wave with a steep descending limb. Exercise testing demonstrated QTc prolongation on standing and at 4 min recovery after exercise. Conclusion The majority of P/LP variants in patients with CACNA1C-mediated LQT8 cluster in an SH3-binding domain of the cytosolic II–III loop. This represents a ‘mutation hotspot’ in LQT8. A late-peaking T wave with a steep descending limb and QT prolongation on exercise are commonly seen.
doi_str_mv 10.1093/europace/euz215
format article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2272738439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/europace/euz215</oup_id><sourcerecordid>2272738439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-d974e230b0c7845b9ebfdb4db5a3ddade5000bafec48963d10ac54199ece65513</originalsourceid><addsrcrecordid>eNqFkM1Lw0AQxRdRbK2evckeRUi7H9km660Ev6AoYjyHze60RtNs3E0K9a93S1uvnuYN_ObNzEPokpIxJZJPoHe2VRqC-GFUHKEhFZxFjEh2HDSRMhKUyQE68_6TEJIwKU7RgNOYpJSQIfrKNy3gFNe2WeLXHPtNY5xdwS1uVfdhl9BUGq-Vq1TTeVw1OJtlzzOaRdBoa8DgTK3pmGFd974DtyXe8lmGW2c7CE1ZNaYK1r7q4BydLFTt4WJfR-j9_i7PHqP5y8NTNptHOuayi4xMYmCclEQnaSxKCeXClLEpheLGKAMiPFKqBeg4lVNuKFFaxFRK0DAVgvIRut75hiO-e_Bdsaq8hrpWDdjeF4wlLOFpWBbQyQ7VznrvYFG0rloptykoKbYJF4eEi13CYeJqb96XKzB__CHSANzsANu3_7r9AscyiDU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272738439</pqid></control><display><type>article</type><title>Type 8 long QT syndrome: pathogenic variants in CACNA1C-encoded Cav1.2 cluster in STAC protein binding site</title><source>Open Access: Oxford University Press Open Journals</source><creator>Mellor, Greg J ; Panwar, Pankaj ; Lee, Andrea K ; Steinberg, Christian ; Hathaway, Julie A ; Bartels, Kirsten ; Christian, Susan ; Balaji, Seshadri ; Roberts, Jason D ; Simpson, Chris S ; Boczek, Nicole J ; Tester, David J ; Radbill, Andrew E ; Mok, Ngai-Shing ; Hamilton, Robert M ; Kaufman, Elizabeth S ; Eugenio, Paul L ; Weiss, Raul ; January, Craig ; McDaniel, George M ; Leather, Richard A ; Erickson, Christopher ; Falik, Shelley ; Behr, Elijah R ; Wilde, Arthur A M ; Sanatani, Shubhayan ; Ackerman, Michael J ; Van Petegem, Filip ; Krahn, Andrew D ; Laksman, Zachary</creator><creatorcontrib>Mellor, Greg J ; Panwar, Pankaj ; Lee, Andrea K ; Steinberg, Christian ; Hathaway, Julie A ; Bartels, Kirsten ; Christian, Susan ; Balaji, Seshadri ; Roberts, Jason D ; Simpson, Chris S ; Boczek, Nicole J ; Tester, David J ; Radbill, Andrew E ; Mok, Ngai-Shing ; Hamilton, Robert M ; Kaufman, Elizabeth S ; Eugenio, Paul L ; Weiss, Raul ; January, Craig ; McDaniel, George M ; Leather, Richard A ; Erickson, Christopher ; Falik, Shelley ; Behr, Elijah R ; Wilde, Arthur A M ; Sanatani, Shubhayan ; Ackerman, Michael J ; Van Petegem, Filip ; Krahn, Andrew D ; Laksman, Zachary</creatorcontrib><description>Abstract Aims Pathogenic gain-of-function variants in CACAN1C cause type-8 long QT syndrome (LQT8). We sought to describe the electrocardiographic features in LQT8 and utilize molecular modelling to gain mechanistic insights into its genetic culprits. Methods and results Rare variants in CACNA1C were identified from genetic testing laboratories. Treating physicians provided clinical information. Variant pathogenicity was independently assessed according to recent guidelines. Pathogenic (P) and likely pathogenic (LP) variants were mapped onto a 3D modelled structure of the Cav1.2 protein. Nine P/LP variants, identified in 23 patients from 19 families with non-syndromic LQTS were identified. Six variants, found in 79% of families, clustered to a 4-residue section in the cytosolic II–III loop region which forms a region capable of binding STAC SH3 domains. Therefore, variants may affect binding of SH3-domain containing proteins. Arrhythmic events occurred in similar proportions of patients with II–III loop variants and with other P/LP variants (53% vs. 48%, P = 0.41) despite shorter QTc intervals (477 ± 31 ms vs. 515 ± 37 ms, P = 0.03). A history of sudden death was reported only in families with II–III loop variants (60% vs. 0%, P = 0.03). The predominant T-wave morphology was a late peaking T wave with a steep descending limb. Exercise testing demonstrated QTc prolongation on standing and at 4 min recovery after exercise. Conclusion The majority of P/LP variants in patients with CACNA1C-mediated LQT8 cluster in an SH3-binding domain of the cytosolic II–III loop. This represents a ‘mutation hotspot’ in LQT8. A late-peaking T wave with a steep descending limb and QT prolongation on exercise are commonly seen.</description><identifier>ISSN: 1099-5129</identifier><identifier>EISSN: 1532-2092</identifier><identifier>DOI: 10.1093/europace/euz215</identifier><identifier>PMID: 31408100</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><ispartof>Europace (London, England), 2019-11, Vol.21 (11), p.1725-1732</ispartof><rights>Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2019. For permissions, please email: journals.permissions@oup.com. 2019</rights><rights>Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2019. For permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-d974e230b0c7845b9ebfdb4db5a3ddade5000bafec48963d10ac54199ece65513</citedby><cites>FETCH-LOGICAL-c439t-d974e230b0c7845b9ebfdb4db5a3ddade5000bafec48963d10ac54199ece65513</cites><orcidid>0000-0002-8246-9974</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/europace/euz215$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31408100$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mellor, Greg J</creatorcontrib><creatorcontrib>Panwar, Pankaj</creatorcontrib><creatorcontrib>Lee, Andrea K</creatorcontrib><creatorcontrib>Steinberg, Christian</creatorcontrib><creatorcontrib>Hathaway, Julie A</creatorcontrib><creatorcontrib>Bartels, Kirsten</creatorcontrib><creatorcontrib>Christian, Susan</creatorcontrib><creatorcontrib>Balaji, Seshadri</creatorcontrib><creatorcontrib>Roberts, Jason D</creatorcontrib><creatorcontrib>Simpson, Chris S</creatorcontrib><creatorcontrib>Boczek, Nicole J</creatorcontrib><creatorcontrib>Tester, David J</creatorcontrib><creatorcontrib>Radbill, Andrew E</creatorcontrib><creatorcontrib>Mok, Ngai-Shing</creatorcontrib><creatorcontrib>Hamilton, Robert M</creatorcontrib><creatorcontrib>Kaufman, Elizabeth S</creatorcontrib><creatorcontrib>Eugenio, Paul L</creatorcontrib><creatorcontrib>Weiss, Raul</creatorcontrib><creatorcontrib>January, Craig</creatorcontrib><creatorcontrib>McDaniel, George M</creatorcontrib><creatorcontrib>Leather, Richard A</creatorcontrib><creatorcontrib>Erickson, Christopher</creatorcontrib><creatorcontrib>Falik, Shelley</creatorcontrib><creatorcontrib>Behr, Elijah R</creatorcontrib><creatorcontrib>Wilde, Arthur A M</creatorcontrib><creatorcontrib>Sanatani, Shubhayan</creatorcontrib><creatorcontrib>Ackerman, Michael J</creatorcontrib><creatorcontrib>Van Petegem, Filip</creatorcontrib><creatorcontrib>Krahn, Andrew D</creatorcontrib><creatorcontrib>Laksman, Zachary</creatorcontrib><title>Type 8 long QT syndrome: pathogenic variants in CACNA1C-encoded Cav1.2 cluster in STAC protein binding site</title><title>Europace (London, England)</title><addtitle>Europace</addtitle><description>Abstract Aims Pathogenic gain-of-function variants in CACAN1C cause type-8 long QT syndrome (LQT8). We sought to describe the electrocardiographic features in LQT8 and utilize molecular modelling to gain mechanistic insights into its genetic culprits. Methods and results Rare variants in CACNA1C were identified from genetic testing laboratories. Treating physicians provided clinical information. Variant pathogenicity was independently assessed according to recent guidelines. Pathogenic (P) and likely pathogenic (LP) variants were mapped onto a 3D modelled structure of the Cav1.2 protein. Nine P/LP variants, identified in 23 patients from 19 families with non-syndromic LQTS were identified. Six variants, found in 79% of families, clustered to a 4-residue section in the cytosolic II–III loop region which forms a region capable of binding STAC SH3 domains. Therefore, variants may affect binding of SH3-domain containing proteins. Arrhythmic events occurred in similar proportions of patients with II–III loop variants and with other P/LP variants (53% vs. 48%, P = 0.41) despite shorter QTc intervals (477 ± 31 ms vs. 515 ± 37 ms, P = 0.03). A history of sudden death was reported only in families with II–III loop variants (60% vs. 0%, P = 0.03). The predominant T-wave morphology was a late peaking T wave with a steep descending limb. Exercise testing demonstrated QTc prolongation on standing and at 4 min recovery after exercise. Conclusion The majority of P/LP variants in patients with CACNA1C-mediated LQT8 cluster in an SH3-binding domain of the cytosolic II–III loop. This represents a ‘mutation hotspot’ in LQT8. A late-peaking T wave with a steep descending limb and QT prolongation on exercise are commonly seen.</description><issn>1099-5129</issn><issn>1532-2092</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Lw0AQxRdRbK2evckeRUi7H9km660Ev6AoYjyHze60RtNs3E0K9a93S1uvnuYN_ObNzEPokpIxJZJPoHe2VRqC-GFUHKEhFZxFjEh2HDSRMhKUyQE68_6TEJIwKU7RgNOYpJSQIfrKNy3gFNe2WeLXHPtNY5xdwS1uVfdhl9BUGq-Vq1TTeVw1OJtlzzOaRdBoa8DgTK3pmGFd974DtyXe8lmGW2c7CE1ZNaYK1r7q4BydLFTt4WJfR-j9_i7PHqP5y8NTNptHOuayi4xMYmCclEQnaSxKCeXClLEpheLGKAMiPFKqBeg4lVNuKFFaxFRK0DAVgvIRut75hiO-e_Bdsaq8hrpWDdjeF4wlLOFpWBbQyQ7VznrvYFG0rloptykoKbYJF4eEi13CYeJqb96XKzB__CHSANzsANu3_7r9AscyiDU</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Mellor, Greg J</creator><creator>Panwar, Pankaj</creator><creator>Lee, Andrea K</creator><creator>Steinberg, Christian</creator><creator>Hathaway, Julie A</creator><creator>Bartels, Kirsten</creator><creator>Christian, Susan</creator><creator>Balaji, Seshadri</creator><creator>Roberts, Jason D</creator><creator>Simpson, Chris S</creator><creator>Boczek, Nicole J</creator><creator>Tester, David J</creator><creator>Radbill, Andrew E</creator><creator>Mok, Ngai-Shing</creator><creator>Hamilton, Robert M</creator><creator>Kaufman, Elizabeth S</creator><creator>Eugenio, Paul L</creator><creator>Weiss, Raul</creator><creator>January, Craig</creator><creator>McDaniel, George M</creator><creator>Leather, Richard A</creator><creator>Erickson, Christopher</creator><creator>Falik, Shelley</creator><creator>Behr, Elijah R</creator><creator>Wilde, Arthur A M</creator><creator>Sanatani, Shubhayan</creator><creator>Ackerman, Michael J</creator><creator>Van Petegem, Filip</creator><creator>Krahn, Andrew D</creator><creator>Laksman, Zachary</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8246-9974</orcidid></search><sort><creationdate>20191101</creationdate><title>Type 8 long QT syndrome: pathogenic variants in CACNA1C-encoded Cav1.2 cluster in STAC protein binding site</title><author>Mellor, Greg J ; Panwar, Pankaj ; Lee, Andrea K ; Steinberg, Christian ; Hathaway, Julie A ; Bartels, Kirsten ; Christian, Susan ; Balaji, Seshadri ; Roberts, Jason D ; Simpson, Chris S ; Boczek, Nicole J ; Tester, David J ; Radbill, Andrew E ; Mok, Ngai-Shing ; Hamilton, Robert M ; Kaufman, Elizabeth S ; Eugenio, Paul L ; Weiss, Raul ; January, Craig ; McDaniel, George M ; Leather, Richard A ; Erickson, Christopher ; Falik, Shelley ; Behr, Elijah R ; Wilde, Arthur A M ; Sanatani, Shubhayan ; Ackerman, Michael J ; Van Petegem, Filip ; Krahn, Andrew D ; Laksman, Zachary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-d974e230b0c7845b9ebfdb4db5a3ddade5000bafec48963d10ac54199ece65513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mellor, Greg J</creatorcontrib><creatorcontrib>Panwar, Pankaj</creatorcontrib><creatorcontrib>Lee, Andrea K</creatorcontrib><creatorcontrib>Steinberg, Christian</creatorcontrib><creatorcontrib>Hathaway, Julie A</creatorcontrib><creatorcontrib>Bartels, Kirsten</creatorcontrib><creatorcontrib>Christian, Susan</creatorcontrib><creatorcontrib>Balaji, Seshadri</creatorcontrib><creatorcontrib>Roberts, Jason D</creatorcontrib><creatorcontrib>Simpson, Chris S</creatorcontrib><creatorcontrib>Boczek, Nicole J</creatorcontrib><creatorcontrib>Tester, David J</creatorcontrib><creatorcontrib>Radbill, Andrew E</creatorcontrib><creatorcontrib>Mok, Ngai-Shing</creatorcontrib><creatorcontrib>Hamilton, Robert M</creatorcontrib><creatorcontrib>Kaufman, Elizabeth S</creatorcontrib><creatorcontrib>Eugenio, Paul L</creatorcontrib><creatorcontrib>Weiss, Raul</creatorcontrib><creatorcontrib>January, Craig</creatorcontrib><creatorcontrib>McDaniel, George M</creatorcontrib><creatorcontrib>Leather, Richard A</creatorcontrib><creatorcontrib>Erickson, Christopher</creatorcontrib><creatorcontrib>Falik, Shelley</creatorcontrib><creatorcontrib>Behr, Elijah R</creatorcontrib><creatorcontrib>Wilde, Arthur A M</creatorcontrib><creatorcontrib>Sanatani, Shubhayan</creatorcontrib><creatorcontrib>Ackerman, Michael J</creatorcontrib><creatorcontrib>Van Petegem, Filip</creatorcontrib><creatorcontrib>Krahn, Andrew D</creatorcontrib><creatorcontrib>Laksman, Zachary</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Europace (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mellor, Greg J</au><au>Panwar, Pankaj</au><au>Lee, Andrea K</au><au>Steinberg, Christian</au><au>Hathaway, Julie A</au><au>Bartels, Kirsten</au><au>Christian, Susan</au><au>Balaji, Seshadri</au><au>Roberts, Jason D</au><au>Simpson, Chris S</au><au>Boczek, Nicole J</au><au>Tester, David J</au><au>Radbill, Andrew E</au><au>Mok, Ngai-Shing</au><au>Hamilton, Robert M</au><au>Kaufman, Elizabeth S</au><au>Eugenio, Paul L</au><au>Weiss, Raul</au><au>January, Craig</au><au>McDaniel, George M</au><au>Leather, Richard A</au><au>Erickson, Christopher</au><au>Falik, Shelley</au><au>Behr, Elijah R</au><au>Wilde, Arthur A M</au><au>Sanatani, Shubhayan</au><au>Ackerman, Michael J</au><au>Van Petegem, Filip</au><au>Krahn, Andrew D</au><au>Laksman, Zachary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Type 8 long QT syndrome: pathogenic variants in CACNA1C-encoded Cav1.2 cluster in STAC protein binding site</atitle><jtitle>Europace (London, England)</jtitle><addtitle>Europace</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>21</volume><issue>11</issue><spage>1725</spage><epage>1732</epage><pages>1725-1732</pages><issn>1099-5129</issn><eissn>1532-2092</eissn><abstract>Abstract Aims Pathogenic gain-of-function variants in CACAN1C cause type-8 long QT syndrome (LQT8). We sought to describe the electrocardiographic features in LQT8 and utilize molecular modelling to gain mechanistic insights into its genetic culprits. Methods and results Rare variants in CACNA1C were identified from genetic testing laboratories. Treating physicians provided clinical information. Variant pathogenicity was independently assessed according to recent guidelines. Pathogenic (P) and likely pathogenic (LP) variants were mapped onto a 3D modelled structure of the Cav1.2 protein. Nine P/LP variants, identified in 23 patients from 19 families with non-syndromic LQTS were identified. Six variants, found in 79% of families, clustered to a 4-residue section in the cytosolic II–III loop region which forms a region capable of binding STAC SH3 domains. Therefore, variants may affect binding of SH3-domain containing proteins. Arrhythmic events occurred in similar proportions of patients with II–III loop variants and with other P/LP variants (53% vs. 48%, P = 0.41) despite shorter QTc intervals (477 ± 31 ms vs. 515 ± 37 ms, P = 0.03). A history of sudden death was reported only in families with II–III loop variants (60% vs. 0%, P = 0.03). The predominant T-wave morphology was a late peaking T wave with a steep descending limb. Exercise testing demonstrated QTc prolongation on standing and at 4 min recovery after exercise. Conclusion The majority of P/LP variants in patients with CACNA1C-mediated LQT8 cluster in an SH3-binding domain of the cytosolic II–III loop. This represents a ‘mutation hotspot’ in LQT8. A late-peaking T wave with a steep descending limb and QT prolongation on exercise are commonly seen.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31408100</pmid><doi>10.1093/europace/euz215</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8246-9974</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1099-5129
ispartof Europace (London, England), 2019-11, Vol.21 (11), p.1725-1732
issn 1099-5129
1532-2092
language eng
recordid cdi_proquest_miscellaneous_2272738439
source Open Access: Oxford University Press Open Journals
title Type 8 long QT syndrome: pathogenic variants in CACNA1C-encoded Cav1.2 cluster in STAC protein binding site
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A00%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Type%208%20long%20QT%20syndrome:%20pathogenic%20variants%20in%20CACNA1C-encoded%20Cav1.2%20cluster%20in%20STAC%20protein%20binding%20site&rft.jtitle=Europace%20(London,%20England)&rft.au=Mellor,%20Greg%20J&rft.date=2019-11-01&rft.volume=21&rft.issue=11&rft.spage=1725&rft.epage=1732&rft.pages=1725-1732&rft.issn=1099-5129&rft.eissn=1532-2092&rft_id=info:doi/10.1093/europace/euz215&rft_dat=%3Cproquest_TOX%3E2272738439%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-d974e230b0c7845b9ebfdb4db5a3ddade5000bafec48963d10ac54199ece65513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2272738439&rft_id=info:pmid/31408100&rft_oup_id=10.1093/europace/euz215&rfr_iscdi=true