Loading…
Type 8 long QT syndrome: pathogenic variants in CACNA1C-encoded Cav1.2 cluster in STAC protein binding site
Abstract Aims Pathogenic gain-of-function variants in CACAN1C cause type-8 long QT syndrome (LQT8). We sought to describe the electrocardiographic features in LQT8 and utilize molecular modelling to gain mechanistic insights into its genetic culprits. Methods and results Rare variants in CACNA1C wer...
Saved in:
Published in: | Europace (London, England) England), 2019-11, Vol.21 (11), p.1725-1732 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c439t-d974e230b0c7845b9ebfdb4db5a3ddade5000bafec48963d10ac54199ece65513 |
---|---|
cites | cdi_FETCH-LOGICAL-c439t-d974e230b0c7845b9ebfdb4db5a3ddade5000bafec48963d10ac54199ece65513 |
container_end_page | 1732 |
container_issue | 11 |
container_start_page | 1725 |
container_title | Europace (London, England) |
container_volume | 21 |
creator | Mellor, Greg J Panwar, Pankaj Lee, Andrea K Steinberg, Christian Hathaway, Julie A Bartels, Kirsten Christian, Susan Balaji, Seshadri Roberts, Jason D Simpson, Chris S Boczek, Nicole J Tester, David J Radbill, Andrew E Mok, Ngai-Shing Hamilton, Robert M Kaufman, Elizabeth S Eugenio, Paul L Weiss, Raul January, Craig McDaniel, George M Leather, Richard A Erickson, Christopher Falik, Shelley Behr, Elijah R Wilde, Arthur A M Sanatani, Shubhayan Ackerman, Michael J Van Petegem, Filip Krahn, Andrew D Laksman, Zachary |
description | Abstract
Aims
Pathogenic gain-of-function variants in CACAN1C cause type-8 long QT syndrome (LQT8). We sought to describe the electrocardiographic features in LQT8 and utilize molecular modelling to gain mechanistic insights into its genetic culprits.
Methods and results
Rare variants in CACNA1C were identified from genetic testing laboratories. Treating physicians provided clinical information. Variant pathogenicity was independently assessed according to recent guidelines. Pathogenic (P) and likely pathogenic (LP) variants were mapped onto a 3D modelled structure of the Cav1.2 protein. Nine P/LP variants, identified in 23 patients from 19 families with non-syndromic LQTS were identified. Six variants, found in 79% of families, clustered to a 4-residue section in the cytosolic II–III loop region which forms a region capable of binding STAC SH3 domains. Therefore, variants may affect binding of SH3-domain containing proteins. Arrhythmic events occurred in similar proportions of patients with II–III loop variants and with other P/LP variants (53% vs. 48%, P = 0.41) despite shorter QTc intervals (477 ± 31 ms vs. 515 ± 37 ms, P = 0.03). A history of sudden death was reported only in families with II–III loop variants (60% vs. 0%, P = 0.03). The predominant T-wave morphology was a late peaking T wave with a steep descending limb. Exercise testing demonstrated QTc prolongation on standing and at 4 min recovery after exercise.
Conclusion
The majority of P/LP variants in patients with CACNA1C-mediated LQT8 cluster in an SH3-binding domain of the cytosolic II–III loop. This represents a ‘mutation hotspot’ in LQT8. A late-peaking T wave with a steep descending limb and QT prolongation on exercise are commonly seen. |
doi_str_mv | 10.1093/europace/euz215 |
format | article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2272738439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/europace/euz215</oup_id><sourcerecordid>2272738439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-d974e230b0c7845b9ebfdb4db5a3ddade5000bafec48963d10ac54199ece65513</originalsourceid><addsrcrecordid>eNqFkM1Lw0AQxRdRbK2evckeRUi7H9km660Ev6AoYjyHze60RtNs3E0K9a93S1uvnuYN_ObNzEPokpIxJZJPoHe2VRqC-GFUHKEhFZxFjEh2HDSRMhKUyQE68_6TEJIwKU7RgNOYpJSQIfrKNy3gFNe2WeLXHPtNY5xdwS1uVfdhl9BUGq-Vq1TTeVw1OJtlzzOaRdBoa8DgTK3pmGFd974DtyXe8lmGW2c7CE1ZNaYK1r7q4BydLFTt4WJfR-j9_i7PHqP5y8NTNptHOuayi4xMYmCclEQnaSxKCeXClLEpheLGKAMiPFKqBeg4lVNuKFFaxFRK0DAVgvIRut75hiO-e_Bdsaq8hrpWDdjeF4wlLOFpWBbQyQ7VznrvYFG0rloptykoKbYJF4eEi13CYeJqb96XKzB__CHSANzsANu3_7r9AscyiDU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272738439</pqid></control><display><type>article</type><title>Type 8 long QT syndrome: pathogenic variants in CACNA1C-encoded Cav1.2 cluster in STAC protein binding site</title><source>Open Access: Oxford University Press Open Journals</source><creator>Mellor, Greg J ; Panwar, Pankaj ; Lee, Andrea K ; Steinberg, Christian ; Hathaway, Julie A ; Bartels, Kirsten ; Christian, Susan ; Balaji, Seshadri ; Roberts, Jason D ; Simpson, Chris S ; Boczek, Nicole J ; Tester, David J ; Radbill, Andrew E ; Mok, Ngai-Shing ; Hamilton, Robert M ; Kaufman, Elizabeth S ; Eugenio, Paul L ; Weiss, Raul ; January, Craig ; McDaniel, George M ; Leather, Richard A ; Erickson, Christopher ; Falik, Shelley ; Behr, Elijah R ; Wilde, Arthur A M ; Sanatani, Shubhayan ; Ackerman, Michael J ; Van Petegem, Filip ; Krahn, Andrew D ; Laksman, Zachary</creator><creatorcontrib>Mellor, Greg J ; Panwar, Pankaj ; Lee, Andrea K ; Steinberg, Christian ; Hathaway, Julie A ; Bartels, Kirsten ; Christian, Susan ; Balaji, Seshadri ; Roberts, Jason D ; Simpson, Chris S ; Boczek, Nicole J ; Tester, David J ; Radbill, Andrew E ; Mok, Ngai-Shing ; Hamilton, Robert M ; Kaufman, Elizabeth S ; Eugenio, Paul L ; Weiss, Raul ; January, Craig ; McDaniel, George M ; Leather, Richard A ; Erickson, Christopher ; Falik, Shelley ; Behr, Elijah R ; Wilde, Arthur A M ; Sanatani, Shubhayan ; Ackerman, Michael J ; Van Petegem, Filip ; Krahn, Andrew D ; Laksman, Zachary</creatorcontrib><description>Abstract
Aims
Pathogenic gain-of-function variants in CACAN1C cause type-8 long QT syndrome (LQT8). We sought to describe the electrocardiographic features in LQT8 and utilize molecular modelling to gain mechanistic insights into its genetic culprits.
Methods and results
Rare variants in CACNA1C were identified from genetic testing laboratories. Treating physicians provided clinical information. Variant pathogenicity was independently assessed according to recent guidelines. Pathogenic (P) and likely pathogenic (LP) variants were mapped onto a 3D modelled structure of the Cav1.2 protein. Nine P/LP variants, identified in 23 patients from 19 families with non-syndromic LQTS were identified. Six variants, found in 79% of families, clustered to a 4-residue section in the cytosolic II–III loop region which forms a region capable of binding STAC SH3 domains. Therefore, variants may affect binding of SH3-domain containing proteins. Arrhythmic events occurred in similar proportions of patients with II–III loop variants and with other P/LP variants (53% vs. 48%, P = 0.41) despite shorter QTc intervals (477 ± 31 ms vs. 515 ± 37 ms, P = 0.03). A history of sudden death was reported only in families with II–III loop variants (60% vs. 0%, P = 0.03). The predominant T-wave morphology was a late peaking T wave with a steep descending limb. Exercise testing demonstrated QTc prolongation on standing and at 4 min recovery after exercise.
Conclusion
The majority of P/LP variants in patients with CACNA1C-mediated LQT8 cluster in an SH3-binding domain of the cytosolic II–III loop. This represents a ‘mutation hotspot’ in LQT8. A late-peaking T wave with a steep descending limb and QT prolongation on exercise are commonly seen.</description><identifier>ISSN: 1099-5129</identifier><identifier>EISSN: 1532-2092</identifier><identifier>DOI: 10.1093/europace/euz215</identifier><identifier>PMID: 31408100</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><ispartof>Europace (London, England), 2019-11, Vol.21 (11), p.1725-1732</ispartof><rights>Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2019. For permissions, please email: journals.permissions@oup.com. 2019</rights><rights>Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2019. For permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-d974e230b0c7845b9ebfdb4db5a3ddade5000bafec48963d10ac54199ece65513</citedby><cites>FETCH-LOGICAL-c439t-d974e230b0c7845b9ebfdb4db5a3ddade5000bafec48963d10ac54199ece65513</cites><orcidid>0000-0002-8246-9974</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/europace/euz215$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31408100$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mellor, Greg J</creatorcontrib><creatorcontrib>Panwar, Pankaj</creatorcontrib><creatorcontrib>Lee, Andrea K</creatorcontrib><creatorcontrib>Steinberg, Christian</creatorcontrib><creatorcontrib>Hathaway, Julie A</creatorcontrib><creatorcontrib>Bartels, Kirsten</creatorcontrib><creatorcontrib>Christian, Susan</creatorcontrib><creatorcontrib>Balaji, Seshadri</creatorcontrib><creatorcontrib>Roberts, Jason D</creatorcontrib><creatorcontrib>Simpson, Chris S</creatorcontrib><creatorcontrib>Boczek, Nicole J</creatorcontrib><creatorcontrib>Tester, David J</creatorcontrib><creatorcontrib>Radbill, Andrew E</creatorcontrib><creatorcontrib>Mok, Ngai-Shing</creatorcontrib><creatorcontrib>Hamilton, Robert M</creatorcontrib><creatorcontrib>Kaufman, Elizabeth S</creatorcontrib><creatorcontrib>Eugenio, Paul L</creatorcontrib><creatorcontrib>Weiss, Raul</creatorcontrib><creatorcontrib>January, Craig</creatorcontrib><creatorcontrib>McDaniel, George M</creatorcontrib><creatorcontrib>Leather, Richard A</creatorcontrib><creatorcontrib>Erickson, Christopher</creatorcontrib><creatorcontrib>Falik, Shelley</creatorcontrib><creatorcontrib>Behr, Elijah R</creatorcontrib><creatorcontrib>Wilde, Arthur A M</creatorcontrib><creatorcontrib>Sanatani, Shubhayan</creatorcontrib><creatorcontrib>Ackerman, Michael J</creatorcontrib><creatorcontrib>Van Petegem, Filip</creatorcontrib><creatorcontrib>Krahn, Andrew D</creatorcontrib><creatorcontrib>Laksman, Zachary</creatorcontrib><title>Type 8 long QT syndrome: pathogenic variants in CACNA1C-encoded Cav1.2 cluster in STAC protein binding site</title><title>Europace (London, England)</title><addtitle>Europace</addtitle><description>Abstract
Aims
Pathogenic gain-of-function variants in CACAN1C cause type-8 long QT syndrome (LQT8). We sought to describe the electrocardiographic features in LQT8 and utilize molecular modelling to gain mechanistic insights into its genetic culprits.
Methods and results
Rare variants in CACNA1C were identified from genetic testing laboratories. Treating physicians provided clinical information. Variant pathogenicity was independently assessed according to recent guidelines. Pathogenic (P) and likely pathogenic (LP) variants were mapped onto a 3D modelled structure of the Cav1.2 protein. Nine P/LP variants, identified in 23 patients from 19 families with non-syndromic LQTS were identified. Six variants, found in 79% of families, clustered to a 4-residue section in the cytosolic II–III loop region which forms a region capable of binding STAC SH3 domains. Therefore, variants may affect binding of SH3-domain containing proteins. Arrhythmic events occurred in similar proportions of patients with II–III loop variants and with other P/LP variants (53% vs. 48%, P = 0.41) despite shorter QTc intervals (477 ± 31 ms vs. 515 ± 37 ms, P = 0.03). A history of sudden death was reported only in families with II–III loop variants (60% vs. 0%, P = 0.03). The predominant T-wave morphology was a late peaking T wave with a steep descending limb. Exercise testing demonstrated QTc prolongation on standing and at 4 min recovery after exercise.
Conclusion
The majority of P/LP variants in patients with CACNA1C-mediated LQT8 cluster in an SH3-binding domain of the cytosolic II–III loop. This represents a ‘mutation hotspot’ in LQT8. A late-peaking T wave with a steep descending limb and QT prolongation on exercise are commonly seen.</description><issn>1099-5129</issn><issn>1532-2092</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Lw0AQxRdRbK2evckeRUi7H9km660Ev6AoYjyHze60RtNs3E0K9a93S1uvnuYN_ObNzEPokpIxJZJPoHe2VRqC-GFUHKEhFZxFjEh2HDSRMhKUyQE68_6TEJIwKU7RgNOYpJSQIfrKNy3gFNe2WeLXHPtNY5xdwS1uVfdhl9BUGq-Vq1TTeVw1OJtlzzOaRdBoa8DgTK3pmGFd974DtyXe8lmGW2c7CE1ZNaYK1r7q4BydLFTt4WJfR-j9_i7PHqP5y8NTNptHOuayi4xMYmCclEQnaSxKCeXClLEpheLGKAMiPFKqBeg4lVNuKFFaxFRK0DAVgvIRut75hiO-e_Bdsaq8hrpWDdjeF4wlLOFpWBbQyQ7VznrvYFG0rloptykoKbYJF4eEi13CYeJqb96XKzB__CHSANzsANu3_7r9AscyiDU</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Mellor, Greg J</creator><creator>Panwar, Pankaj</creator><creator>Lee, Andrea K</creator><creator>Steinberg, Christian</creator><creator>Hathaway, Julie A</creator><creator>Bartels, Kirsten</creator><creator>Christian, Susan</creator><creator>Balaji, Seshadri</creator><creator>Roberts, Jason D</creator><creator>Simpson, Chris S</creator><creator>Boczek, Nicole J</creator><creator>Tester, David J</creator><creator>Radbill, Andrew E</creator><creator>Mok, Ngai-Shing</creator><creator>Hamilton, Robert M</creator><creator>Kaufman, Elizabeth S</creator><creator>Eugenio, Paul L</creator><creator>Weiss, Raul</creator><creator>January, Craig</creator><creator>McDaniel, George M</creator><creator>Leather, Richard A</creator><creator>Erickson, Christopher</creator><creator>Falik, Shelley</creator><creator>Behr, Elijah R</creator><creator>Wilde, Arthur A M</creator><creator>Sanatani, Shubhayan</creator><creator>Ackerman, Michael J</creator><creator>Van Petegem, Filip</creator><creator>Krahn, Andrew D</creator><creator>Laksman, Zachary</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8246-9974</orcidid></search><sort><creationdate>20191101</creationdate><title>Type 8 long QT syndrome: pathogenic variants in CACNA1C-encoded Cav1.2 cluster in STAC protein binding site</title><author>Mellor, Greg J ; Panwar, Pankaj ; Lee, Andrea K ; Steinberg, Christian ; Hathaway, Julie A ; Bartels, Kirsten ; Christian, Susan ; Balaji, Seshadri ; Roberts, Jason D ; Simpson, Chris S ; Boczek, Nicole J ; Tester, David J ; Radbill, Andrew E ; Mok, Ngai-Shing ; Hamilton, Robert M ; Kaufman, Elizabeth S ; Eugenio, Paul L ; Weiss, Raul ; January, Craig ; McDaniel, George M ; Leather, Richard A ; Erickson, Christopher ; Falik, Shelley ; Behr, Elijah R ; Wilde, Arthur A M ; Sanatani, Shubhayan ; Ackerman, Michael J ; Van Petegem, Filip ; Krahn, Andrew D ; Laksman, Zachary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-d974e230b0c7845b9ebfdb4db5a3ddade5000bafec48963d10ac54199ece65513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mellor, Greg J</creatorcontrib><creatorcontrib>Panwar, Pankaj</creatorcontrib><creatorcontrib>Lee, Andrea K</creatorcontrib><creatorcontrib>Steinberg, Christian</creatorcontrib><creatorcontrib>Hathaway, Julie A</creatorcontrib><creatorcontrib>Bartels, Kirsten</creatorcontrib><creatorcontrib>Christian, Susan</creatorcontrib><creatorcontrib>Balaji, Seshadri</creatorcontrib><creatorcontrib>Roberts, Jason D</creatorcontrib><creatorcontrib>Simpson, Chris S</creatorcontrib><creatorcontrib>Boczek, Nicole J</creatorcontrib><creatorcontrib>Tester, David J</creatorcontrib><creatorcontrib>Radbill, Andrew E</creatorcontrib><creatorcontrib>Mok, Ngai-Shing</creatorcontrib><creatorcontrib>Hamilton, Robert M</creatorcontrib><creatorcontrib>Kaufman, Elizabeth S</creatorcontrib><creatorcontrib>Eugenio, Paul L</creatorcontrib><creatorcontrib>Weiss, Raul</creatorcontrib><creatorcontrib>January, Craig</creatorcontrib><creatorcontrib>McDaniel, George M</creatorcontrib><creatorcontrib>Leather, Richard A</creatorcontrib><creatorcontrib>Erickson, Christopher</creatorcontrib><creatorcontrib>Falik, Shelley</creatorcontrib><creatorcontrib>Behr, Elijah R</creatorcontrib><creatorcontrib>Wilde, Arthur A M</creatorcontrib><creatorcontrib>Sanatani, Shubhayan</creatorcontrib><creatorcontrib>Ackerman, Michael J</creatorcontrib><creatorcontrib>Van Petegem, Filip</creatorcontrib><creatorcontrib>Krahn, Andrew D</creatorcontrib><creatorcontrib>Laksman, Zachary</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Europace (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mellor, Greg J</au><au>Panwar, Pankaj</au><au>Lee, Andrea K</au><au>Steinberg, Christian</au><au>Hathaway, Julie A</au><au>Bartels, Kirsten</au><au>Christian, Susan</au><au>Balaji, Seshadri</au><au>Roberts, Jason D</au><au>Simpson, Chris S</au><au>Boczek, Nicole J</au><au>Tester, David J</au><au>Radbill, Andrew E</au><au>Mok, Ngai-Shing</au><au>Hamilton, Robert M</au><au>Kaufman, Elizabeth S</au><au>Eugenio, Paul L</au><au>Weiss, Raul</au><au>January, Craig</au><au>McDaniel, George M</au><au>Leather, Richard A</au><au>Erickson, Christopher</au><au>Falik, Shelley</au><au>Behr, Elijah R</au><au>Wilde, Arthur A M</au><au>Sanatani, Shubhayan</au><au>Ackerman, Michael J</au><au>Van Petegem, Filip</au><au>Krahn, Andrew D</au><au>Laksman, Zachary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Type 8 long QT syndrome: pathogenic variants in CACNA1C-encoded Cav1.2 cluster in STAC protein binding site</atitle><jtitle>Europace (London, England)</jtitle><addtitle>Europace</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>21</volume><issue>11</issue><spage>1725</spage><epage>1732</epage><pages>1725-1732</pages><issn>1099-5129</issn><eissn>1532-2092</eissn><abstract>Abstract
Aims
Pathogenic gain-of-function variants in CACAN1C cause type-8 long QT syndrome (LQT8). We sought to describe the electrocardiographic features in LQT8 and utilize molecular modelling to gain mechanistic insights into its genetic culprits.
Methods and results
Rare variants in CACNA1C were identified from genetic testing laboratories. Treating physicians provided clinical information. Variant pathogenicity was independently assessed according to recent guidelines. Pathogenic (P) and likely pathogenic (LP) variants were mapped onto a 3D modelled structure of the Cav1.2 protein. Nine P/LP variants, identified in 23 patients from 19 families with non-syndromic LQTS were identified. Six variants, found in 79% of families, clustered to a 4-residue section in the cytosolic II–III loop region which forms a region capable of binding STAC SH3 domains. Therefore, variants may affect binding of SH3-domain containing proteins. Arrhythmic events occurred in similar proportions of patients with II–III loop variants and with other P/LP variants (53% vs. 48%, P = 0.41) despite shorter QTc intervals (477 ± 31 ms vs. 515 ± 37 ms, P = 0.03). A history of sudden death was reported only in families with II–III loop variants (60% vs. 0%, P = 0.03). The predominant T-wave morphology was a late peaking T wave with a steep descending limb. Exercise testing demonstrated QTc prolongation on standing and at 4 min recovery after exercise.
Conclusion
The majority of P/LP variants in patients with CACNA1C-mediated LQT8 cluster in an SH3-binding domain of the cytosolic II–III loop. This represents a ‘mutation hotspot’ in LQT8. A late-peaking T wave with a steep descending limb and QT prolongation on exercise are commonly seen.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31408100</pmid><doi>10.1093/europace/euz215</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8246-9974</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1099-5129 |
ispartof | Europace (London, England), 2019-11, Vol.21 (11), p.1725-1732 |
issn | 1099-5129 1532-2092 |
language | eng |
recordid | cdi_proquest_miscellaneous_2272738439 |
source | Open Access: Oxford University Press Open Journals |
title | Type 8 long QT syndrome: pathogenic variants in CACNA1C-encoded Cav1.2 cluster in STAC protein binding site |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A00%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Type%208%20long%20QT%20syndrome:%20pathogenic%20variants%20in%20CACNA1C-encoded%20Cav1.2%20cluster%20in%20STAC%20protein%20binding%20site&rft.jtitle=Europace%20(London,%20England)&rft.au=Mellor,%20Greg%20J&rft.date=2019-11-01&rft.volume=21&rft.issue=11&rft.spage=1725&rft.epage=1732&rft.pages=1725-1732&rft.issn=1099-5129&rft.eissn=1532-2092&rft_id=info:doi/10.1093/europace/euz215&rft_dat=%3Cproquest_TOX%3E2272738439%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-d974e230b0c7845b9ebfdb4db5a3ddade5000bafec48963d10ac54199ece65513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2272738439&rft_id=info:pmid/31408100&rft_oup_id=10.1093/europace/euz215&rfr_iscdi=true |