Loading…

Reconstitution of cellulosome: Research progress and its application in biorefinery

Lignocellulose, one of the most abundant renewable sources of sugar, can be converted into bioenergy through hydrolysis of cellulose and hemicellulose. Due to its renewability and availability in large quantities, bioenergy is considered as a possible alternative to fossil energy and attracts the at...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology and applied biochemistry 2019-09, Vol.66 (5), p.720-730
Main Authors: Hu, Bin‐Bin, Zhu, Ming‐Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lignocellulose, one of the most abundant renewable sources of sugar, can be converted into bioenergy through hydrolysis of cellulose and hemicellulose. Due to its renewability and availability in large quantities, bioenergy is considered as a possible alternative to fossil energy and attracts the attention of the world with increased concerns about environmental protection and energy crisis. The depolymerization of cellulosic substrate to monomer is the rate‐limiting step in the bioconversion of lignocellulose by cellulolytic microbes. Cellulosome, a multienzyme complex from anaerobic cellulolytic bacteria, can efficiently degrade the cellulosic substrates. Previous studies have shown that the reconstitution of cellulosome in vitro and its heterologous expression or display on the cell surface can help to solve the low yield problem of cellulosome in cellulolytic bacteria. This paper reviews the research progress in the reconstitution of cellulosome as well as its application in biorefinery, including the construction of cellulosome as well as different methods for cellulosome reconstitution and its surface display. This review will promote the understanding of cellulosome and its reconstitution.
ISSN:0885-4513
1470-8744
DOI:10.1002/bab.1804