Loading…

T-cell acute lymphoblastic leukemia displays autocrine production of Interleukin-7

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy characterized by an accumulation of immature T cells. Although patient outcomes have improved, novel targeted therapies are needed to reduce the intensity of chemotherapy and improve the prognosis of high-risk pati...

Full description

Saved in:
Bibliographic Details
Published in:Oncogene 2019-11, Vol.38 (48), p.7357-7365
Main Authors: Buffière, Anne, Uzan, Benjamin, Aucagne, Romain, Hermetet, François, Mas, Manon, Nassurdine, Sandra, Aznague, Aziza, Carmignac, Virginie, Tournier, Benjamin, Bouchot, Olivier, Ballerini, Paola, Barata, João T., Bastie, Jean-Noël, Delva, Laurent, Pflumio, Françoise, Quéré, Ronan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy characterized by an accumulation of immature T cells. Although patient outcomes have improved, novel targeted therapies are needed to reduce the intensity of chemotherapy and improve the prognosis of high-risk patients. Interleukin-7 (IL-7) modulates the survival and proliferation of normal and malignant T cells. Targeting the IL-7 signaling pathway is thus a potentially effective therapeutic strategy. To achieve such aim, it is essential to first understand how the IL-7 signaling pathway is activated. Although IL-7 production has been observed from multiple stromal tissues, T-ALL autocrine IL-7 secretion has not yet been described. Interestingly, using T-ALL cell lines, primary and patient-derived xenotransplanted (PDX) T-ALL cells, we demonstrate that T-ALL cells produce IL-7 whereas normal T cells do not. Finally, using knock down of IL7 gene in T-ALL cells, we describe to what extent IL-7 autocrine secretion is involved in the T-ALL cells propagation in bone marrow and how it affects the number of leukemia-initiating cells in PDX mice. Together, these results demonstrate how the autocrine production of the IL-7 cytokine mediated by T-ALL cells can be involved in the oncogenic development of T-ALL and offer novel insights into T-ALL spreading.
ISSN:0950-9232
1476-5594
DOI:10.1038/s41388-019-0921-4