Loading…
Lysosomal dysfunction disturbs porcine oocyte maturation and developmental capacity by disorganizing chromosome/cytoskeleton and activating autophagy/apoptosis
Lysosome, an important organelle in eukaryotes, can sequester macromolecules submitted by the endocytosis and autophagy pathways for degradation and recycling. Massive macromolecular turnover is also vital to the growth and development of mammalian oocytes. However, the functional role of lysosomes...
Saved in:
Published in: | Theriogenology 2019-12, Vol.140, p.44-51 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lysosome, an important organelle in eukaryotes, can sequester macromolecules submitted by the endocytosis and autophagy pathways for degradation and recycling. Massive macromolecular turnover is also vital to the growth and development of mammalian oocytes. However, the functional role of lysosomes in the meiotic maturation of mammalian oocytes remains largely unexplored. Here, by treating in vitro matured porcine cumulus-oocyte complexes (COCs) with chloroquine (CQ), a lysosome inhibitor, we showed that regardless of CQ concentration, lysosomal inhibition affected neither the extrusion of the first polar body (PB1), nor the ROS levels. However, CQ treatment dramatically decreased the rates of oocytes with normal chromosome alignment and cytoskeleton organization (P |
---|---|
ISSN: | 0093-691X 1879-3231 |
DOI: | 10.1016/j.theriogenology.2019.08.019 |