Loading…

Stable adaptive probabilistic Takagi–Sugeno–Kang fuzzy controller for dynamic systems with uncertainties

In this study, an adaptive probabilistic Takagi–Sugeno–Kang fuzzy PID (APTSKF-PID) scheme is developed to control nonlinear systems. The proposed controller merges the features of the TSK fuzzy logic system, which possess a superior performance in system size and learning accuracy than the Mamdani-t...

Full description

Saved in:
Bibliographic Details
Published in:ISA transactions 2020-03, Vol.98, p.271-283
Main Authors: Shaheen, Omar, El-Nagar, Ahmad M., El-Bardini, Mohammad, El-Rabaie, Nabila M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c362t-9fb35db53de629b27fa22682260053ddc9707debd20f78e7178b998e591f221b3
cites cdi_FETCH-LOGICAL-c362t-9fb35db53de629b27fa22682260053ddc9707debd20f78e7178b998e591f221b3
container_end_page 283
container_issue
container_start_page 271
container_title ISA transactions
container_volume 98
creator Shaheen, Omar
El-Nagar, Ahmad M.
El-Bardini, Mohammad
El-Rabaie, Nabila M.
description In this study, an adaptive probabilistic Takagi–Sugeno–Kang fuzzy PID (APTSKF-PID) scheme is developed to control nonlinear systems. The proposed controller merges the features of the TSK fuzzy logic system, which possess a superior performance in system size and learning accuracy than the Mamdani-type fuzzy systems and the probabilistic processing method in nonlinear control, which handles the system uncertainties. To achieve controlled system stability, Lyapunov function is used for tuning the controller parameters. Tuning the probability parameters provides an extra degree of flexibility in controller design and improves the control performance. Furthermore, to ensure the effectiveness of the developed scheme for engineering applications, the proposed control technology is introduced to control nonlinear dynamical plants and its performance is compared with existing schemes. Simulation tasks indicate that the efficiency of APTSKF-PID scheme has high superiority over the other controller for external disturbances, random noise and a large scope of system uncertainties. •An adaptive probabilistic TSK fuzzy controller is introduced.•The proposed controller combines the advantages of TSK fuzzy and probabilistic theory.•The controller parameters are updated on-line based on the Lyapunov theorem.
doi_str_mv 10.1016/j.isatra.2019.08.035
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2281131428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019057819303817</els_id><sourcerecordid>2281131428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-9fb35db53de629b27fa22682260053ddc9707debd20f78e7178b998e591f221b3</originalsourceid><addsrcrecordid>eNp9kM1uFDEMxyMEokvLGyCUI5cZHE9nJ7kgoQooohKHtucoH54ly3wsSaZoe-Id-oZ9ElJt6ZGDZcv-_235x9gbAbUAsX6_rUMyOZoaQagaZA1N-4ythOxUhYD4nK2gTCpoO3nEXqW0BQBslXzJjhpx2gpsxIoNl9nYgbjxZpfDDfFdnK2xYQgpB8evzE-zCfd_7i6XDU1zKb6ZacP75fZ2z9085TgPA0Xez5H7_WTG4kn7lGlM_HfIP_gyOYrZhCkHSifsRW-GRK8f8zG7_vzp6uy8uvj-5evZx4vKNWvMlept03rbNp7WqCx2vUFcyxIApemd6qDzZD1C30nqRCetUpJaJXpEYZtj9u6wtzzza6GU9RiSo2EwE81L0ohSiMIAZZGeHqQuzilF6vUuhtHEvRagHzjrrT5w1g-cNUhdOBfb28cLix3JP5n-gS2CDwcBlT9vAkWdXKACw4dILms_h_9f-AtHHZST</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2281131428</pqid></control><display><type>article</type><title>Stable adaptive probabilistic Takagi–Sugeno–Kang fuzzy controller for dynamic systems with uncertainties</title><source>ScienceDirect Journals</source><creator>Shaheen, Omar ; El-Nagar, Ahmad M. ; El-Bardini, Mohammad ; El-Rabaie, Nabila M.</creator><creatorcontrib>Shaheen, Omar ; El-Nagar, Ahmad M. ; El-Bardini, Mohammad ; El-Rabaie, Nabila M.</creatorcontrib><description>In this study, an adaptive probabilistic Takagi–Sugeno–Kang fuzzy PID (APTSKF-PID) scheme is developed to control nonlinear systems. The proposed controller merges the features of the TSK fuzzy logic system, which possess a superior performance in system size and learning accuracy than the Mamdani-type fuzzy systems and the probabilistic processing method in nonlinear control, which handles the system uncertainties. To achieve controlled system stability, Lyapunov function is used for tuning the controller parameters. Tuning the probability parameters provides an extra degree of flexibility in controller design and improves the control performance. Furthermore, to ensure the effectiveness of the developed scheme for engineering applications, the proposed control technology is introduced to control nonlinear dynamical plants and its performance is compared with existing schemes. Simulation tasks indicate that the efficiency of APTSKF-PID scheme has high superiority over the other controller for external disturbances, random noise and a large scope of system uncertainties. •An adaptive probabilistic TSK fuzzy controller is introduced.•The proposed controller combines the advantages of TSK fuzzy and probabilistic theory.•The controller parameters are updated on-line based on the Lyapunov theorem.</description><identifier>ISSN: 0019-0578</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2019.08.035</identifier><identifier>PMID: 31451231</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Lyapunov theory ; Probabilistic fuzzy system ; Probabilistic TSK fuzzy controller ; Uncertain systems</subject><ispartof>ISA transactions, 2020-03, Vol.98, p.271-283</ispartof><rights>2019 ISA</rights><rights>Copyright © 2019 ISA. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-9fb35db53de629b27fa22682260053ddc9707debd20f78e7178b998e591f221b3</citedby><cites>FETCH-LOGICAL-c362t-9fb35db53de629b27fa22682260053ddc9707debd20f78e7178b998e591f221b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31451231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shaheen, Omar</creatorcontrib><creatorcontrib>El-Nagar, Ahmad M.</creatorcontrib><creatorcontrib>El-Bardini, Mohammad</creatorcontrib><creatorcontrib>El-Rabaie, Nabila M.</creatorcontrib><title>Stable adaptive probabilistic Takagi–Sugeno–Kang fuzzy controller for dynamic systems with uncertainties</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>In this study, an adaptive probabilistic Takagi–Sugeno–Kang fuzzy PID (APTSKF-PID) scheme is developed to control nonlinear systems. The proposed controller merges the features of the TSK fuzzy logic system, which possess a superior performance in system size and learning accuracy than the Mamdani-type fuzzy systems and the probabilistic processing method in nonlinear control, which handles the system uncertainties. To achieve controlled system stability, Lyapunov function is used for tuning the controller parameters. Tuning the probability parameters provides an extra degree of flexibility in controller design and improves the control performance. Furthermore, to ensure the effectiveness of the developed scheme for engineering applications, the proposed control technology is introduced to control nonlinear dynamical plants and its performance is compared with existing schemes. Simulation tasks indicate that the efficiency of APTSKF-PID scheme has high superiority over the other controller for external disturbances, random noise and a large scope of system uncertainties. •An adaptive probabilistic TSK fuzzy controller is introduced.•The proposed controller combines the advantages of TSK fuzzy and probabilistic theory.•The controller parameters are updated on-line based on the Lyapunov theorem.</description><subject>Lyapunov theory</subject><subject>Probabilistic fuzzy system</subject><subject>Probabilistic TSK fuzzy controller</subject><subject>Uncertain systems</subject><issn>0019-0578</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1uFDEMxyMEokvLGyCUI5cZHE9nJ7kgoQooohKHtucoH54ly3wsSaZoe-Id-oZ9ElJt6ZGDZcv-_235x9gbAbUAsX6_rUMyOZoaQagaZA1N-4ythOxUhYD4nK2gTCpoO3nEXqW0BQBslXzJjhpx2gpsxIoNl9nYgbjxZpfDDfFdnK2xYQgpB8evzE-zCfd_7i6XDU1zKb6ZacP75fZ2z9085TgPA0Xez5H7_WTG4kn7lGlM_HfIP_gyOYrZhCkHSifsRW-GRK8f8zG7_vzp6uy8uvj-5evZx4vKNWvMlept03rbNp7WqCx2vUFcyxIApemd6qDzZD1C30nqRCetUpJaJXpEYZtj9u6wtzzza6GU9RiSo2EwE81L0ohSiMIAZZGeHqQuzilF6vUuhtHEvRagHzjrrT5w1g-cNUhdOBfb28cLix3JP5n-gS2CDwcBlT9vAkWdXKACw4dILms_h_9f-AtHHZST</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Shaheen, Omar</creator><creator>El-Nagar, Ahmad M.</creator><creator>El-Bardini, Mohammad</creator><creator>El-Rabaie, Nabila M.</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202003</creationdate><title>Stable adaptive probabilistic Takagi–Sugeno–Kang fuzzy controller for dynamic systems with uncertainties</title><author>Shaheen, Omar ; El-Nagar, Ahmad M. ; El-Bardini, Mohammad ; El-Rabaie, Nabila M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-9fb35db53de629b27fa22682260053ddc9707debd20f78e7178b998e591f221b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Lyapunov theory</topic><topic>Probabilistic fuzzy system</topic><topic>Probabilistic TSK fuzzy controller</topic><topic>Uncertain systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaheen, Omar</creatorcontrib><creatorcontrib>El-Nagar, Ahmad M.</creatorcontrib><creatorcontrib>El-Bardini, Mohammad</creatorcontrib><creatorcontrib>El-Rabaie, Nabila M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaheen, Omar</au><au>El-Nagar, Ahmad M.</au><au>El-Bardini, Mohammad</au><au>El-Rabaie, Nabila M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable adaptive probabilistic Takagi–Sugeno–Kang fuzzy controller for dynamic systems with uncertainties</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2020-03</date><risdate>2020</risdate><volume>98</volume><spage>271</spage><epage>283</epage><pages>271-283</pages><issn>0019-0578</issn><eissn>1879-2022</eissn><abstract>In this study, an adaptive probabilistic Takagi–Sugeno–Kang fuzzy PID (APTSKF-PID) scheme is developed to control nonlinear systems. The proposed controller merges the features of the TSK fuzzy logic system, which possess a superior performance in system size and learning accuracy than the Mamdani-type fuzzy systems and the probabilistic processing method in nonlinear control, which handles the system uncertainties. To achieve controlled system stability, Lyapunov function is used for tuning the controller parameters. Tuning the probability parameters provides an extra degree of flexibility in controller design and improves the control performance. Furthermore, to ensure the effectiveness of the developed scheme for engineering applications, the proposed control technology is introduced to control nonlinear dynamical plants and its performance is compared with existing schemes. Simulation tasks indicate that the efficiency of APTSKF-PID scheme has high superiority over the other controller for external disturbances, random noise and a large scope of system uncertainties. •An adaptive probabilistic TSK fuzzy controller is introduced.•The proposed controller combines the advantages of TSK fuzzy and probabilistic theory.•The controller parameters are updated on-line based on the Lyapunov theorem.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>31451231</pmid><doi>10.1016/j.isatra.2019.08.035</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0019-0578
ispartof ISA transactions, 2020-03, Vol.98, p.271-283
issn 0019-0578
1879-2022
language eng
recordid cdi_proquest_miscellaneous_2281131428
source ScienceDirect Journals
subjects Lyapunov theory
Probabilistic fuzzy system
Probabilistic TSK fuzzy controller
Uncertain systems
title Stable adaptive probabilistic Takagi–Sugeno–Kang fuzzy controller for dynamic systems with uncertainties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A00%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20adaptive%20probabilistic%20Takagi%E2%80%93Sugeno%E2%80%93Kang%20fuzzy%20controller%20for%20dynamic%20systems%20with%20uncertainties&rft.jtitle=ISA%20transactions&rft.au=Shaheen,%20Omar&rft.date=2020-03&rft.volume=98&rft.spage=271&rft.epage=283&rft.pages=271-283&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2019.08.035&rft_dat=%3Cproquest_cross%3E2281131428%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-9fb35db53de629b27fa22682260053ddc9707debd20f78e7178b998e591f221b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2281131428&rft_id=info:pmid/31451231&rfr_iscdi=true