Loading…

Design Considerations for a Migma Advanced Fuel Fusion Reactor

The migma concept is being pursued at Fusion Energy Corporation as a means of achieving controlled fusion.1-4 The features which distinguish this concept from other controlled fusion concepts may be summarized as: 1. High energy 2. Ordered motion 3. Use of advanced fuels 4. Small physical size Beams...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on nuclear science 1977-06, Vol.24 (3), p.1018-1019
Main Authors: Golden, J. E., Miller, R. A., Maglich, B. C., Channon, S. R., Treglio, J. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-ab898800752bfe8525c03b1ba08fbca7094794be2f1a44bd8692ca70c6a64cae3
cites cdi_FETCH-LOGICAL-c292t-ab898800752bfe8525c03b1ba08fbca7094794be2f1a44bd8692ca70c6a64cae3
container_end_page 1019
container_issue 3
container_start_page 1018
container_title IEEE transactions on nuclear science
container_volume 24
creator Golden, J. E.
Miller, R. A.
Maglich, B. C.
Channon, S. R.
Treglio, J. R.
description The migma concept is being pursued at Fusion Energy Corporation as a means of achieving controlled fusion.1-4 The features which distinguish this concept from other controlled fusion concepts may be summarized as: 1. High energy 2. Ordered motion 3. Use of advanced fuels 4. Small physical size Beams of ions are injected into the field of a superconducting magnet at MeV energies. The resulting motions of trapped ions have a high degree of order in phase space compared with a thermalized gas. At MeV energies the two major ion loss mechanisms, charge transfer and multiple Coulomb scattering, are greatly suppressed compared with thermonuclear energies (1-100 keV), because the cross section for multiple Coulomb scattering falls off as T1-5 and that for charge transfer approximately as T-5. Because ions are injected at nearly the average energy of the migma, it may also be said that, as a practical matter, the use of ordered motions facilitates the attainment of colliding energies in the MeV range. The ion motion is essentially that of precessing orbits which all intersect within a central core that is small compared with a gyrodiameter. Motion along the magnetic field lines is confined by a non-adiabatic focusing. The high collision energies obtainable enable the use of what are called "Advanced Fuels," that is, fuels other than the deuteriumtritium (D-T) mixture planned for, e.g., the tokamak fusion reactor. These fuels require higher collision energies for useful reaction rates.
doi_str_mv 10.1109/TNS.1977.4328836
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_22818119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4328836</ieee_id><sourcerecordid>22818119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-ab898800752bfe8525c03b1ba08fbca7094794be2f1a44bd8692ca70c6a64cae3</originalsourceid><addsrcrecordid>eNo9kM9LwzAUgIMoOKd3wUtP3jqTNGmTizCmU2Eq6DyHl_R1RLp2Jp3gf2_Gppf383vv8BFyyeiEMapvli_vE6araiIKrlRRHpERk1LlTFbqmIwoZSrXQutTchbjZ2qFpHJEbu8w-lWXzfou-hoDDD5VWdOHDLJnv1pDNq2_oXNYZ_MttinERGRvCG7owzk5aaCNeHHIY_Ixv1_OHvPF68PTbLrIHdd8yMEqrRSlleS2QSW5dLSwzAJVjXVQUS0qLSzyhoEQtlal5ruxK6EUDrAYk-v9303ov7YYB7P20WHbQof9NhrOFVOM6QTSPehCH2PAxmyCX0P4MYyanSiTRJmdKHMQlU6u9iceEf_xv-0v9VFjxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>22818119</pqid></control><display><type>article</type><title>Design Considerations for a Migma Advanced Fuel Fusion Reactor</title><source>IEEE Xplore (Online service)</source><creator>Golden, J. E. ; Miller, R. A. ; Maglich, B. C. ; Channon, S. R. ; Treglio, J. R.</creator><creatorcontrib>Golden, J. E. ; Miller, R. A. ; Maglich, B. C. ; Channon, S. R. ; Treglio, J. R.</creatorcontrib><description>The migma concept is being pursued at Fusion Energy Corporation as a means of achieving controlled fusion.1-4 The features which distinguish this concept from other controlled fusion concepts may be summarized as: 1. High energy 2. Ordered motion 3. Use of advanced fuels 4. Small physical size Beams of ions are injected into the field of a superconducting magnet at MeV energies. The resulting motions of trapped ions have a high degree of order in phase space compared with a thermalized gas. At MeV energies the two major ion loss mechanisms, charge transfer and multiple Coulomb scattering, are greatly suppressed compared with thermonuclear energies (1-100 keV), because the cross section for multiple Coulomb scattering falls off as T1-5 and that for charge transfer approximately as T-5. Because ions are injected at nearly the average energy of the migma, it may also be said that, as a practical matter, the use of ordered motions facilitates the attainment of colliding energies in the MeV range. The ion motion is essentially that of precessing orbits which all intersect within a central core that is small compared with a gyrodiameter. Motion along the magnetic field lines is confined by a non-adiabatic focusing. The high collision energies obtainable enable the use of what are called "Advanced Fuels," that is, fuels other than the deuteriumtritium (D-T) mixture planned for, e.g., the tokamak fusion reactor. These fuels require higher collision energies for useful reaction rates.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.1977.4328836</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>IEEE</publisher><subject>Charge transfer ; Fuels ; Fusion reactor design ; Fusion reactors ; Ion beams ; Magnetic cores ; Magnetic fields ; Orbits ; Scattering ; Superconducting magnets</subject><ispartof>IEEE transactions on nuclear science, 1977-06, Vol.24 (3), p.1018-1019</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-ab898800752bfe8525c03b1ba08fbca7094794be2f1a44bd8692ca70c6a64cae3</citedby><cites>FETCH-LOGICAL-c292t-ab898800752bfe8525c03b1ba08fbca7094794be2f1a44bd8692ca70c6a64cae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4328836$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Golden, J. E.</creatorcontrib><creatorcontrib>Miller, R. A.</creatorcontrib><creatorcontrib>Maglich, B. C.</creatorcontrib><creatorcontrib>Channon, S. R.</creatorcontrib><creatorcontrib>Treglio, J. R.</creatorcontrib><title>Design Considerations for a Migma Advanced Fuel Fusion Reactor</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>The migma concept is being pursued at Fusion Energy Corporation as a means of achieving controlled fusion.1-4 The features which distinguish this concept from other controlled fusion concepts may be summarized as: 1. High energy 2. Ordered motion 3. Use of advanced fuels 4. Small physical size Beams of ions are injected into the field of a superconducting magnet at MeV energies. The resulting motions of trapped ions have a high degree of order in phase space compared with a thermalized gas. At MeV energies the two major ion loss mechanisms, charge transfer and multiple Coulomb scattering, are greatly suppressed compared with thermonuclear energies (1-100 keV), because the cross section for multiple Coulomb scattering falls off as T1-5 and that for charge transfer approximately as T-5. Because ions are injected at nearly the average energy of the migma, it may also be said that, as a practical matter, the use of ordered motions facilitates the attainment of colliding energies in the MeV range. The ion motion is essentially that of precessing orbits which all intersect within a central core that is small compared with a gyrodiameter. Motion along the magnetic field lines is confined by a non-adiabatic focusing. The high collision energies obtainable enable the use of what are called "Advanced Fuels," that is, fuels other than the deuteriumtritium (D-T) mixture planned for, e.g., the tokamak fusion reactor. These fuels require higher collision energies for useful reaction rates.</description><subject>Charge transfer</subject><subject>Fuels</subject><subject>Fusion reactor design</subject><subject>Fusion reactors</subject><subject>Ion beams</subject><subject>Magnetic cores</subject><subject>Magnetic fields</subject><subject>Orbits</subject><subject>Scattering</subject><subject>Superconducting magnets</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1977</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAUgIMoOKd3wUtP3jqTNGmTizCmU2Eq6DyHl_R1RLp2Jp3gf2_Gppf383vv8BFyyeiEMapvli_vE6araiIKrlRRHpERk1LlTFbqmIwoZSrXQutTchbjZ2qFpHJEbu8w-lWXzfou-hoDDD5VWdOHDLJnv1pDNq2_oXNYZ_MttinERGRvCG7owzk5aaCNeHHIY_Ixv1_OHvPF68PTbLrIHdd8yMEqrRSlleS2QSW5dLSwzAJVjXVQUS0qLSzyhoEQtlal5ruxK6EUDrAYk-v9303ov7YYB7P20WHbQof9NhrOFVOM6QTSPehCH2PAxmyCX0P4MYyanSiTRJmdKHMQlU6u9iceEf_xv-0v9VFjxw</recordid><startdate>19770601</startdate><enddate>19770601</enddate><creator>Golden, J. E.</creator><creator>Miller, R. A.</creator><creator>Maglich, B. C.</creator><creator>Channon, S. R.</creator><creator>Treglio, J. R.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19770601</creationdate><title>Design Considerations for a Migma Advanced Fuel Fusion Reactor</title><author>Golden, J. E. ; Miller, R. A. ; Maglich, B. C. ; Channon, S. R. ; Treglio, J. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-ab898800752bfe8525c03b1ba08fbca7094794be2f1a44bd8692ca70c6a64cae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1977</creationdate><topic>Charge transfer</topic><topic>Fuels</topic><topic>Fusion reactor design</topic><topic>Fusion reactors</topic><topic>Ion beams</topic><topic>Magnetic cores</topic><topic>Magnetic fields</topic><topic>Orbits</topic><topic>Scattering</topic><topic>Superconducting magnets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golden, J. E.</creatorcontrib><creatorcontrib>Miller, R. A.</creatorcontrib><creatorcontrib>Maglich, B. C.</creatorcontrib><creatorcontrib>Channon, S. R.</creatorcontrib><creatorcontrib>Treglio, J. R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golden, J. E.</au><au>Miller, R. A.</au><au>Maglich, B. C.</au><au>Channon, S. R.</au><au>Treglio, J. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design Considerations for a Migma Advanced Fuel Fusion Reactor</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>1977-06-01</date><risdate>1977</risdate><volume>24</volume><issue>3</issue><spage>1018</spage><epage>1019</epage><pages>1018-1019</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>The migma concept is being pursued at Fusion Energy Corporation as a means of achieving controlled fusion.1-4 The features which distinguish this concept from other controlled fusion concepts may be summarized as: 1. High energy 2. Ordered motion 3. Use of advanced fuels 4. Small physical size Beams of ions are injected into the field of a superconducting magnet at MeV energies. The resulting motions of trapped ions have a high degree of order in phase space compared with a thermalized gas. At MeV energies the two major ion loss mechanisms, charge transfer and multiple Coulomb scattering, are greatly suppressed compared with thermonuclear energies (1-100 keV), because the cross section for multiple Coulomb scattering falls off as T1-5 and that for charge transfer approximately as T-5. Because ions are injected at nearly the average energy of the migma, it may also be said that, as a practical matter, the use of ordered motions facilitates the attainment of colliding energies in the MeV range. The ion motion is essentially that of precessing orbits which all intersect within a central core that is small compared with a gyrodiameter. Motion along the magnetic field lines is confined by a non-adiabatic focusing. The high collision energies obtainable enable the use of what are called "Advanced Fuels," that is, fuels other than the deuteriumtritium (D-T) mixture planned for, e.g., the tokamak fusion reactor. These fuels require higher collision energies for useful reaction rates.</abstract><pub>IEEE</pub><doi>10.1109/TNS.1977.4328836</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 1977-06, Vol.24 (3), p.1018-1019
issn 0018-9499
1558-1578
language eng
recordid cdi_proquest_miscellaneous_22818119
source IEEE Xplore (Online service)
subjects Charge transfer
Fuels
Fusion reactor design
Fusion reactors
Ion beams
Magnetic cores
Magnetic fields
Orbits
Scattering
Superconducting magnets
title Design Considerations for a Migma Advanced Fuel Fusion Reactor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A13%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20Considerations%20for%20a%20Migma%20Advanced%20Fuel%20Fusion%20Reactor&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Golden,%20J.%20E.&rft.date=1977-06-01&rft.volume=24&rft.issue=3&rft.spage=1018&rft.epage=1019&rft.pages=1018-1019&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.1977.4328836&rft_dat=%3Cproquest_cross%3E22818119%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-ab898800752bfe8525c03b1ba08fbca7094794be2f1a44bd8692ca70c6a64cae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=22818119&rft_id=info:pmid/&rft_ieee_id=4328836&rfr_iscdi=true