Loading…

Metal–Single-Molecule–Semiconductor Junctions Formed by a Radical Reaction Bridging Gold and Silicon Electrodes

Here we report molecular films terminated with diazonium salts moieties at both ends which enables single-molecule contacts between gold and silicon electrodes at open circuit via a radical reaction. We show that the kinetics of film grafting is crystal-facet dependent, being more favorable on ⟨111⟩...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2019-09, Vol.141 (37), p.14788-14797
Main Authors: Peiris, Chandramalika R, Vogel, Yan B, Le Brun, Anton P, Aragonès, Albert C, Coote, Michelle L, Díez-Pérez, Ismael, Ciampi, Simone, Darwish, Nadim
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a362t-2eb9eb92991d6759fae972d096a9e07989f690fc70279682a6054eee5358aa713
cites cdi_FETCH-LOGICAL-a362t-2eb9eb92991d6759fae972d096a9e07989f690fc70279682a6054eee5358aa713
container_end_page 14797
container_issue 37
container_start_page 14788
container_title Journal of the American Chemical Society
container_volume 141
creator Peiris, Chandramalika R
Vogel, Yan B
Le Brun, Anton P
Aragonès, Albert C
Coote, Michelle L
Díez-Pérez, Ismael
Ciampi, Simone
Darwish, Nadim
description Here we report molecular films terminated with diazonium salts moieties at both ends which enables single-molecule contacts between gold and silicon electrodes at open circuit via a radical reaction. We show that the kinetics of film grafting is crystal-facet dependent, being more favorable on ⟨111⟩ than on ⟨100⟩, a finding that adds control over surface chemistry during the device fabrication. The impact of this spontaneous chemistry in single-molecule electronics is demonstrated using STM-break junction approaches by forming metal–single-molecule–semiconductor junctions between silicon and gold source and drain, electrodes. Au–C and Si–C molecule–electrode contacts result in single-molecule wires that are mechanically stable, with an average lifetime at room temperature of 1.1 s, which is 30–400% higher than that reported for conventional molecular junctions formed between gold electrodes using thiol and amine contact groups. The high stability enabled measuring current–voltage properties during the lifetime of the molecular junction. We show that current rectification, which is intrinsic to metal–semiconductor junctions, can be controlled when a single-molecule bridges the gap in the junction. The system changes from being a current rectifier in the absence of a molecular bridge to an ohmic contact when a single molecule is covalently bonded to both silicon and gold electrodes. This study paves the way for the merging of the fields of single-molecule and silicon electronics.
doi_str_mv 10.1021/jacs.9b07125
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2281840514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2281840514</sourcerecordid><originalsourceid>FETCH-LOGICAL-a362t-2eb9eb92991d6759fae972d096a9e07989f690fc70279682a6054eee5358aa713</originalsourceid><addsrcrecordid>eNptkMtOxCAUhonR6Di6c21YurAKtEBZ6sRrxph4WTcMnE46YYpCu3DnO_iGPonUGXVjchJyzvn5CB9CB5ScUMLo6UKbeKJmRFLGN9CIckYyTpnYRCNCCMtkKfIdtBvjIrUFK-k22slpwTmRYoTiHXTafb5_PDbt3EF25x2Y3sEwgWVjfGt70_mAb_vWdI1vI770YQkWz96wxg_aNkY7_AD6e4vPQ2PnCYWvvLNYtxY_Nm7A4IsE7oK3EPfQVq1dhP31OUbPlxdPk-tsen91MzmbZjoXrMsYzFQqphS1QnJVa1CSWaKEVkCkKlUtFKmNJEwqUTItCC8AgOe81FrSfIyOVtyX4F97iF21bKIB53QLvo8VSzLKgnBapOjxKmqCjzFAXb2EZqnDW0VJNWiuBs3VWnOKH67J_Sy5-A3_eP17eri18H1o00f_Z30BpwiIEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2281840514</pqid></control><display><type>article</type><title>Metal–Single-Molecule–Semiconductor Junctions Formed by a Radical Reaction Bridging Gold and Silicon Electrodes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Peiris, Chandramalika R ; Vogel, Yan B ; Le Brun, Anton P ; Aragonès, Albert C ; Coote, Michelle L ; Díez-Pérez, Ismael ; Ciampi, Simone ; Darwish, Nadim</creator><creatorcontrib>Peiris, Chandramalika R ; Vogel, Yan B ; Le Brun, Anton P ; Aragonès, Albert C ; Coote, Michelle L ; Díez-Pérez, Ismael ; Ciampi, Simone ; Darwish, Nadim</creatorcontrib><description>Here we report molecular films terminated with diazonium salts moieties at both ends which enables single-molecule contacts between gold and silicon electrodes at open circuit via a radical reaction. We show that the kinetics of film grafting is crystal-facet dependent, being more favorable on ⟨111⟩ than on ⟨100⟩, a finding that adds control over surface chemistry during the device fabrication. The impact of this spontaneous chemistry in single-molecule electronics is demonstrated using STM-break junction approaches by forming metal–single-molecule–semiconductor junctions between silicon and gold source and drain, electrodes. Au–C and Si–C molecule–electrode contacts result in single-molecule wires that are mechanically stable, with an average lifetime at room temperature of 1.1 s, which is 30–400% higher than that reported for conventional molecular junctions formed between gold electrodes using thiol and amine contact groups. The high stability enabled measuring current–voltage properties during the lifetime of the molecular junction. We show that current rectification, which is intrinsic to metal–semiconductor junctions, can be controlled when a single-molecule bridges the gap in the junction. The system changes from being a current rectifier in the absence of a molecular bridge to an ohmic contact when a single molecule is covalently bonded to both silicon and gold electrodes. This study paves the way for the merging of the fields of single-molecule and silicon electronics.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.9b07125</identifier><identifier>PMID: 31455076</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2019-09, Vol.141 (37), p.14788-14797</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a362t-2eb9eb92991d6759fae972d096a9e07989f690fc70279682a6054eee5358aa713</citedby><cites>FETCH-LOGICAL-a362t-2eb9eb92991d6759fae972d096a9e07989f690fc70279682a6054eee5358aa713</cites><orcidid>0000-0003-0513-8888 ; 0000-0002-8272-8454 ; 0000-0003-0828-7053 ; 0000-0002-6565-1723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31455076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peiris, Chandramalika R</creatorcontrib><creatorcontrib>Vogel, Yan B</creatorcontrib><creatorcontrib>Le Brun, Anton P</creatorcontrib><creatorcontrib>Aragonès, Albert C</creatorcontrib><creatorcontrib>Coote, Michelle L</creatorcontrib><creatorcontrib>Díez-Pérez, Ismael</creatorcontrib><creatorcontrib>Ciampi, Simone</creatorcontrib><creatorcontrib>Darwish, Nadim</creatorcontrib><title>Metal–Single-Molecule–Semiconductor Junctions Formed by a Radical Reaction Bridging Gold and Silicon Electrodes</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Here we report molecular films terminated with diazonium salts moieties at both ends which enables single-molecule contacts between gold and silicon electrodes at open circuit via a radical reaction. We show that the kinetics of film grafting is crystal-facet dependent, being more favorable on ⟨111⟩ than on ⟨100⟩, a finding that adds control over surface chemistry during the device fabrication. The impact of this spontaneous chemistry in single-molecule electronics is demonstrated using STM-break junction approaches by forming metal–single-molecule–semiconductor junctions between silicon and gold source and drain, electrodes. Au–C and Si–C molecule–electrode contacts result in single-molecule wires that are mechanically stable, with an average lifetime at room temperature of 1.1 s, which is 30–400% higher than that reported for conventional molecular junctions formed between gold electrodes using thiol and amine contact groups. The high stability enabled measuring current–voltage properties during the lifetime of the molecular junction. We show that current rectification, which is intrinsic to metal–semiconductor junctions, can be controlled when a single-molecule bridges the gap in the junction. The system changes from being a current rectifier in the absence of a molecular bridge to an ohmic contact when a single molecule is covalently bonded to both silicon and gold electrodes. This study paves the way for the merging of the fields of single-molecule and silicon electronics.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptkMtOxCAUhonR6Di6c21YurAKtEBZ6sRrxph4WTcMnE46YYpCu3DnO_iGPonUGXVjchJyzvn5CB9CB5ScUMLo6UKbeKJmRFLGN9CIckYyTpnYRCNCCMtkKfIdtBvjIrUFK-k22slpwTmRYoTiHXTafb5_PDbt3EF25x2Y3sEwgWVjfGt70_mAb_vWdI1vI770YQkWz96wxg_aNkY7_AD6e4vPQ2PnCYWvvLNYtxY_Nm7A4IsE7oK3EPfQVq1dhP31OUbPlxdPk-tsen91MzmbZjoXrMsYzFQqphS1QnJVa1CSWaKEVkCkKlUtFKmNJEwqUTItCC8AgOe81FrSfIyOVtyX4F97iF21bKIB53QLvo8VSzLKgnBapOjxKmqCjzFAXb2EZqnDW0VJNWiuBs3VWnOKH67J_Sy5-A3_eP17eri18H1o00f_Z30BpwiIEQ</recordid><startdate>20190918</startdate><enddate>20190918</enddate><creator>Peiris, Chandramalika R</creator><creator>Vogel, Yan B</creator><creator>Le Brun, Anton P</creator><creator>Aragonès, Albert C</creator><creator>Coote, Michelle L</creator><creator>Díez-Pérez, Ismael</creator><creator>Ciampi, Simone</creator><creator>Darwish, Nadim</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0513-8888</orcidid><orcidid>https://orcid.org/0000-0002-8272-8454</orcidid><orcidid>https://orcid.org/0000-0003-0828-7053</orcidid><orcidid>https://orcid.org/0000-0002-6565-1723</orcidid></search><sort><creationdate>20190918</creationdate><title>Metal–Single-Molecule–Semiconductor Junctions Formed by a Radical Reaction Bridging Gold and Silicon Electrodes</title><author>Peiris, Chandramalika R ; Vogel, Yan B ; Le Brun, Anton P ; Aragonès, Albert C ; Coote, Michelle L ; Díez-Pérez, Ismael ; Ciampi, Simone ; Darwish, Nadim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a362t-2eb9eb92991d6759fae972d096a9e07989f690fc70279682a6054eee5358aa713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peiris, Chandramalika R</creatorcontrib><creatorcontrib>Vogel, Yan B</creatorcontrib><creatorcontrib>Le Brun, Anton P</creatorcontrib><creatorcontrib>Aragonès, Albert C</creatorcontrib><creatorcontrib>Coote, Michelle L</creatorcontrib><creatorcontrib>Díez-Pérez, Ismael</creatorcontrib><creatorcontrib>Ciampi, Simone</creatorcontrib><creatorcontrib>Darwish, Nadim</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peiris, Chandramalika R</au><au>Vogel, Yan B</au><au>Le Brun, Anton P</au><au>Aragonès, Albert C</au><au>Coote, Michelle L</au><au>Díez-Pérez, Ismael</au><au>Ciampi, Simone</au><au>Darwish, Nadim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal–Single-Molecule–Semiconductor Junctions Formed by a Radical Reaction Bridging Gold and Silicon Electrodes</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2019-09-18</date><risdate>2019</risdate><volume>141</volume><issue>37</issue><spage>14788</spage><epage>14797</epage><pages>14788-14797</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Here we report molecular films terminated with diazonium salts moieties at both ends which enables single-molecule contacts between gold and silicon electrodes at open circuit via a radical reaction. We show that the kinetics of film grafting is crystal-facet dependent, being more favorable on ⟨111⟩ than on ⟨100⟩, a finding that adds control over surface chemistry during the device fabrication. The impact of this spontaneous chemistry in single-molecule electronics is demonstrated using STM-break junction approaches by forming metal–single-molecule–semiconductor junctions between silicon and gold source and drain, electrodes. Au–C and Si–C molecule–electrode contacts result in single-molecule wires that are mechanically stable, with an average lifetime at room temperature of 1.1 s, which is 30–400% higher than that reported for conventional molecular junctions formed between gold electrodes using thiol and amine contact groups. The high stability enabled measuring current–voltage properties during the lifetime of the molecular junction. We show that current rectification, which is intrinsic to metal–semiconductor junctions, can be controlled when a single-molecule bridges the gap in the junction. The system changes from being a current rectifier in the absence of a molecular bridge to an ohmic contact when a single molecule is covalently bonded to both silicon and gold electrodes. This study paves the way for the merging of the fields of single-molecule and silicon electronics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31455076</pmid><doi>10.1021/jacs.9b07125</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0513-8888</orcidid><orcidid>https://orcid.org/0000-0002-8272-8454</orcidid><orcidid>https://orcid.org/0000-0003-0828-7053</orcidid><orcidid>https://orcid.org/0000-0002-6565-1723</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2019-09, Vol.141 (37), p.14788-14797
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2281840514
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Metal–Single-Molecule–Semiconductor Junctions Formed by a Radical Reaction Bridging Gold and Silicon Electrodes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%E2%80%93Single-Molecule%E2%80%93Semiconductor%20Junctions%20Formed%20by%20a%20Radical%20Reaction%20Bridging%20Gold%20and%20Silicon%20Electrodes&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Peiris,%20Chandramalika%20R&rft.date=2019-09-18&rft.volume=141&rft.issue=37&rft.spage=14788&rft.epage=14797&rft.pages=14788-14797&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.9b07125&rft_dat=%3Cproquest_cross%3E2281840514%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a362t-2eb9eb92991d6759fae972d096a9e07989f690fc70279682a6054eee5358aa713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2281840514&rft_id=info:pmid/31455076&rfr_iscdi=true