Loading…

Fipronil induces apoptosis and cell cycle arrest in porcine oocytes during in vitro maturation

Fipronil (FPN) is a widely used phenylpyrazole pesticide that can kill pests by blocking γ-aminobutyric acid (GABA)-gated chloride channels. In addition, there are lack of studies on the effects of FPN on the female mammalian gametes. In this study, porcine oocytes were used to investigate the effec...

Full description

Saved in:
Bibliographic Details
Published in:Apoptosis (London) 2019-10, Vol.24 (9-10), p.718-729
Main Authors: Zhou, Wenjun, Niu, Ying-Jie, Nie, Zheng-Wen, Kim, Yong-Han, Shin, Kyung-Tae, Guo, Jing, Cui, Xiang-Shun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fipronil (FPN) is a widely used phenylpyrazole pesticide that can kill pests by blocking γ-aminobutyric acid (GABA)-gated chloride channels. In addition, there are lack of studies on the effects of FPN on the female mammalian gametes. In this study, porcine oocytes were used to investigate the effects of FPN on the oocyte maturation process. The results showed that the first polar body extrusion rate significantly decreased (100 μM FPN vs. control, 18.64 ± 2.95% vs. 74.90 ± 1.50%, respectively), and oocytes were arrested at the germinal vesicle stage in 100 μM FPN group. Meanwhile, the FPN caused a significant increase in reactive oxygen species (ROS) levels and severe DNA damage inside the oocytes. Furthermore, apoptosis was enhanced along with decreases in mitochondrial membrane potential, BCL-xL, and the release of cytochrome C in FPN-treated group. Additionally, low CDK1 activity and delayed cyclin B1 degradation during germinal vesicle breakdown were found in the FPN-treated group, which resulted from the activation of ATM-P53-P21 pathway. In conclusion, FPN induces apoptosis and cell cycle arrest in porcine oocyte maturation because of increased ROS levels and DNA damage. This suggests that the FPN in the environment may have potential detrimental effects on the female mammalian reproductive system.
ISSN:1360-8185
1573-675X
DOI:10.1007/s10495-019-01552-w