Loading…
Genomic analysis informs malaria evolution
Updated analysis of Plasmodium falciparum malaria reveals markers of antimalarial resistance Detailed comparisons of DNA sequences shared between individuals or groups can allow the inference of relatedness among current members of a species and estimate when they may have been part of the same inte...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2019-08, Vol.365 (6455), p.752-753 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c301t-22f6e066f7da887e1f4dcf84f55a830bda06a284756578e095715134459271753 |
container_end_page | 753 |
container_issue | 6455 |
container_start_page | 752 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 365 |
creator | Sibley, Carol Hopkins |
description | Updated analysis of
Plasmodium falciparum
malaria reveals markers of antimalarial resistance
Detailed comparisons of DNA sequences shared between individuals or groups can allow the inference of relatedness among current members of a species and estimate when they may have been part of the same interbreeding population. These approaches have been applied intensively to humans, and they support a detailed model of the origins and relatedness of humans, joining the threads of our common evolutionary history (
1
). On page 813 of this issue, Amambua-Ngwa
et al.
(
2
) apply these powerful population genetics techniques to several thousand genomes of
Plasmodium falciparum
, the deadliest malaria parasite, from a wide range of sites in 15 African countries. Their findings update the evolutionary history of this African parasite and enhance the foundation on which to examine recent selection pressures on local populations. Moreover, they identify genomic signatures that indicate recent selection by current antimalarial drugs. |
doi_str_mv | 10.1126/science.aay0988 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2282454568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26782239</jstor_id><sourcerecordid>26782239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-22f6e066f7da887e1f4dcf84f55a830bda06a284756578e095715134459271753</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK2ePSkBLyKknf3ePUrRKhS86Dlsk13YkmTrbiL035vS2IOnObzPvMw8CN1imGNMxCKV3ralnRuzB63UGZpi0DzXBOg5mgJQkSuQfIKuUtoCDJmml2hCMaNaKjxFTyvbhsaXmWlNvU8-Zb51ITYpa0xtojeZ_Ql13_nQXqMLZ-pkb8Y5Q1-vL5_Lt3z9sXpfPq_zkgLuckKcsCCEk5VRSlrsWFU6xRznRlHYVAaEIYpJLrhUdjhJYo4pY1wTiSWnM_R47N3F8N3b1BWNT6Wta9Pa0KeCEEUYZ1yoAX34h25DH4dPDpRUwIFhOlCLI1XGkFK0rthF35i4LzAUB43FqLEYNQ4b92Nvv2lsdeL_vA3A3RHYpi7EU06EVIRQTX8Bx_V3Gw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2278050413</pqid></control><display><type>article</type><title>Genomic analysis informs malaria evolution</title><source>Alma/SFX Local Collection</source><source>Science Online科学在线</source><creator>Sibley, Carol Hopkins</creator><creatorcontrib>Sibley, Carol Hopkins</creatorcontrib><description>Updated analysis of
Plasmodium falciparum
malaria reveals markers of antimalarial resistance
Detailed comparisons of DNA sequences shared between individuals or groups can allow the inference of relatedness among current members of a species and estimate when they may have been part of the same interbreeding population. These approaches have been applied intensively to humans, and they support a detailed model of the origins and relatedness of humans, joining the threads of our common evolutionary history (
1
). On page 813 of this issue, Amambua-Ngwa
et al.
(
2
) apply these powerful population genetics techniques to several thousand genomes of
Plasmodium falciparum
, the deadliest malaria parasite, from a wide range of sites in 15 African countries. Their findings update the evolutionary history of this African parasite and enhance the foundation on which to examine recent selection pressures on local populations. Moreover, they identify genomic signatures that indicate recent selection by current antimalarial drugs.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aay0988</identifier><identifier>PMID: 31439781</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Biological evolution ; Deoxyribonucleic acid ; DNA ; Evolutionary genetics ; Gene sequencing ; Genetics ; Genomes ; Genomic analysis ; Local population ; Malaria ; Nucleotide sequence ; Parasites ; PERSPECTIVES ; Plasmodium falciparum ; Population genetics ; Vector-borne diseases</subject><ispartof>Science (American Association for the Advancement of Science), 2019-08, Vol.365 (6455), p.752-753</ispartof><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-22f6e066f7da887e1f4dcf84f55a830bda06a284756578e095715134459271753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2871,2872,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31439781$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sibley, Carol Hopkins</creatorcontrib><title>Genomic analysis informs malaria evolution</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Updated analysis of
Plasmodium falciparum
malaria reveals markers of antimalarial resistance
Detailed comparisons of DNA sequences shared between individuals or groups can allow the inference of relatedness among current members of a species and estimate when they may have been part of the same interbreeding population. These approaches have been applied intensively to humans, and they support a detailed model of the origins and relatedness of humans, joining the threads of our common evolutionary history (
1
). On page 813 of this issue, Amambua-Ngwa
et al.
(
2
) apply these powerful population genetics techniques to several thousand genomes of
Plasmodium falciparum
, the deadliest malaria parasite, from a wide range of sites in 15 African countries. Their findings update the evolutionary history of this African parasite and enhance the foundation on which to examine recent selection pressures on local populations. Moreover, they identify genomic signatures that indicate recent selection by current antimalarial drugs.</description><subject>Biological evolution</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Evolutionary genetics</subject><subject>Gene sequencing</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Genomic analysis</subject><subject>Local population</subject><subject>Malaria</subject><subject>Nucleotide sequence</subject><subject>Parasites</subject><subject>PERSPECTIVES</subject><subject>Plasmodium falciparum</subject><subject>Population genetics</subject><subject>Vector-borne diseases</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRbK2ePSkBLyKknf3ePUrRKhS86Dlsk13YkmTrbiL035vS2IOnObzPvMw8CN1imGNMxCKV3ralnRuzB63UGZpi0DzXBOg5mgJQkSuQfIKuUtoCDJmml2hCMaNaKjxFTyvbhsaXmWlNvU8-Zb51ITYpa0xtojeZ_Ql13_nQXqMLZ-pkb8Y5Q1-vL5_Lt3z9sXpfPq_zkgLuckKcsCCEk5VRSlrsWFU6xRznRlHYVAaEIYpJLrhUdjhJYo4pY1wTiSWnM_R47N3F8N3b1BWNT6Wta9Pa0KeCEEUYZ1yoAX34h25DH4dPDpRUwIFhOlCLI1XGkFK0rthF35i4LzAUB43FqLEYNQ4b92Nvv2lsdeL_vA3A3RHYpi7EU06EVIRQTX8Bx_V3Gw</recordid><startdate>20190823</startdate><enddate>20190823</enddate><creator>Sibley, Carol Hopkins</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20190823</creationdate><title>Genomic analysis informs malaria evolution</title><author>Sibley, Carol Hopkins</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-22f6e066f7da887e1f4dcf84f55a830bda06a284756578e095715134459271753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biological evolution</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Evolutionary genetics</topic><topic>Gene sequencing</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Genomic analysis</topic><topic>Local population</topic><topic>Malaria</topic><topic>Nucleotide sequence</topic><topic>Parasites</topic><topic>PERSPECTIVES</topic><topic>Plasmodium falciparum</topic><topic>Population genetics</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sibley, Carol Hopkins</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sibley, Carol Hopkins</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genomic analysis informs malaria evolution</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2019-08-23</date><risdate>2019</risdate><volume>365</volume><issue>6455</issue><spage>752</spage><epage>753</epage><pages>752-753</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Updated analysis of
Plasmodium falciparum
malaria reveals markers of antimalarial resistance
Detailed comparisons of DNA sequences shared between individuals or groups can allow the inference of relatedness among current members of a species and estimate when they may have been part of the same interbreeding population. These approaches have been applied intensively to humans, and they support a detailed model of the origins and relatedness of humans, joining the threads of our common evolutionary history (
1
). On page 813 of this issue, Amambua-Ngwa
et al.
(
2
) apply these powerful population genetics techniques to several thousand genomes of
Plasmodium falciparum
, the deadliest malaria parasite, from a wide range of sites in 15 African countries. Their findings update the evolutionary history of this African parasite and enhance the foundation on which to examine recent selection pressures on local populations. Moreover, they identify genomic signatures that indicate recent selection by current antimalarial drugs.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>31439781</pmid><doi>10.1126/science.aay0988</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2019-08, Vol.365 (6455), p.752-753 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2282454568 |
source | Alma/SFX Local Collection; Science Online科学在线 |
subjects | Biological evolution Deoxyribonucleic acid DNA Evolutionary genetics Gene sequencing Genetics Genomes Genomic analysis Local population Malaria Nucleotide sequence Parasites PERSPECTIVES Plasmodium falciparum Population genetics Vector-borne diseases |
title | Genomic analysis informs malaria evolution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A44%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genomic%20analysis%20informs%20malaria%20evolution&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Sibley,%20Carol%20Hopkins&rft.date=2019-08-23&rft.volume=365&rft.issue=6455&rft.spage=752&rft.epage=753&rft.pages=752-753&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aay0988&rft_dat=%3Cjstor_proqu%3E26782239%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c301t-22f6e066f7da887e1f4dcf84f55a830bda06a284756578e095715134459271753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2278050413&rft_id=info:pmid/31439781&rft_jstor_id=26782239&rfr_iscdi=true |