Loading…

Fabrication of Flexible and Transparent Conductive Nanosheets by the UV‐Irradiation of Gold Nanoparticle Monolayers

Conductive films that are highly transparent and flexible are extremely attractive for emerging optoelectronic applications. Currently, indium‐doped tin oxide films are the most widely used transparent conductive films and much research effort is devoted to developing alternative transparent conduct...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2020-03, Vol.16 (12), p.e1903365-n/a
Main Authors: Nishimura, Tatsuya, Ito, Naoyuki, Kinoshita, Kazuhiko, Matsukawa, Mizuki, Imura, Yoshiro, Kawai, Takeshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4395-33bcdb46f93b657a4aa18cfa2d0cc0d7b4e66ca17067f04ece11c0b1110128ea3
cites cdi_FETCH-LOGICAL-c4395-33bcdb46f93b657a4aa18cfa2d0cc0d7b4e66ca17067f04ece11c0b1110128ea3
container_end_page n/a
container_issue 12
container_start_page e1903365
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 16
creator Nishimura, Tatsuya
Ito, Naoyuki
Kinoshita, Kazuhiko
Matsukawa, Mizuki
Imura, Yoshiro
Kawai, Takeshi
description Conductive films that are highly transparent and flexible are extremely attractive for emerging optoelectronic applications. Currently, indium‐doped tin oxide films are the most widely used transparent conductive films and much research effort is devoted to developing alternative transparent conductive materials to overcome their drawbacks. In this work, a novel and facile approach for fabricating transparent conductive Au nanosheets from Au nanoparticles (AuNPs) is proposed. Irradiating an AuNP monolayer at the air–water interface with UV light results in a nanosheet with ≈3.5 nm thickness and ≈80% transparency in the UV–visible region. Further, the so‐fabricated nanosheets are highly flexible and can maintain their electrical conductivity even when they are bent to a radius of curvature of 0.6 mm. Fourier‐transform infrared and X‐ray photoelectron spectroscopy characterizations reveal that the transformation of the monolayer of AuNPs into the nanosheet is induced by the photodecomposition and/or photodetachment of the dodecanethiol ligands capping the AuNPs. Further, the UV‐irradiation of a hybrid monolayer consisting of AuNPs and silica particles affords the patterning of Au nanosheets with periodic hole arrays. Au nanosheets with ≈3.5 nm thickness are fabricated by irradiating Au nanoparticles (AuNP) monolayers at the air–water interface with UV light. The nanosheets have excellent flexibility, transparency, and conductivity, and can be readily transferred onto various substrates. Furthermore, nanosheets patterned with periodic holes can be obtained by embedding SiO2 particles in the AuNP monolayer.
doi_str_mv 10.1002/smll.201903365
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2282457779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2282457779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4395-33bcdb46f93b657a4aa18cfa2d0cc0d7b4e66ca17067f04ece11c0b1110128ea3</originalsourceid><addsrcrecordid>eNqFkT1vFDEQQC0EIiHQUiJLNDR3jD_W3i3RiQuRLlCQ0Fq2d1Zx5LMPexe4jp_Ab-SXsOHCIdFQzRRvnkZ6hDxnsGQA_HXdxrjkwDoQQjUPyClTTCxUy7uHx53BCXlS6y2AYFzqx-REMKmkUOqUTGvrSvB2DDnRPNB1xG_BRaQ29fSq2FR3tmAa6SqnfvJj-IL0vU253iCOlbo9HW-QXn_6-f3HRSm2D0fTeY79b3QWjMHPysuccrR7LPUpeTTYWPHZ_Twj1-u3V6t3i82H84vVm83CS9E1CyGc751UQyecarSV1rLWD5b34D302klUylumQekBJHpkzINjjAHjLVpxRl4dvLuSP09YR7MN1WOMNmGequG85bLRWncz-vIf9DZPJc3fGS5aIUC3DczU8kD5kmstOJhdCVtb9oaBuQti7oKYY5D54MW9dnJb7I_4nwIz0B2AryHi_j868_Fys_kr_wWqg5nU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383307850</pqid></control><display><type>article</type><title>Fabrication of Flexible and Transparent Conductive Nanosheets by the UV‐Irradiation of Gold Nanoparticle Monolayers</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Nishimura, Tatsuya ; Ito, Naoyuki ; Kinoshita, Kazuhiko ; Matsukawa, Mizuki ; Imura, Yoshiro ; Kawai, Takeshi</creator><creatorcontrib>Nishimura, Tatsuya ; Ito, Naoyuki ; Kinoshita, Kazuhiko ; Matsukawa, Mizuki ; Imura, Yoshiro ; Kawai, Takeshi</creatorcontrib><description>Conductive films that are highly transparent and flexible are extremely attractive for emerging optoelectronic applications. Currently, indium‐doped tin oxide films are the most widely used transparent conductive films and much research effort is devoted to developing alternative transparent conductive materials to overcome their drawbacks. In this work, a novel and facile approach for fabricating transparent conductive Au nanosheets from Au nanoparticles (AuNPs) is proposed. Irradiating an AuNP monolayer at the air–water interface with UV light results in a nanosheet with ≈3.5 nm thickness and ≈80% transparency in the UV–visible region. Further, the so‐fabricated nanosheets are highly flexible and can maintain their electrical conductivity even when they are bent to a radius of curvature of 0.6 mm. Fourier‐transform infrared and X‐ray photoelectron spectroscopy characterizations reveal that the transformation of the monolayer of AuNPs into the nanosheet is induced by the photodecomposition and/or photodetachment of the dodecanethiol ligands capping the AuNPs. Further, the UV‐irradiation of a hybrid monolayer consisting of AuNPs and silica particles affords the patterning of Au nanosheets with periodic hole arrays. Au nanosheets with ≈3.5 nm thickness are fabricated by irradiating Au nanoparticles (AuNP) monolayers at the air–water interface with UV light. The nanosheets have excellent flexibility, transparency, and conductivity, and can be readily transferred onto various substrates. Furthermore, nanosheets patterned with periodic holes can be obtained by embedding SiO2 particles in the AuNP monolayer.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201903365</identifier><identifier>PMID: 31464366</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Decomposition reactions ; Electrical resistivity ; Gold ; gold nanoparticles ; Irradiation ; Monolayers ; Nanoparticles ; nanopatterning ; Nanosheets ; Nanotechnology ; Optoelectronics ; Oxide coatings ; Photodecomposition ; Photodetachment ; Photoelectrons ; Radius of curvature ; Silicon dioxide ; Tin oxides ; transparent conductive ultrathin films ; Ultraviolet radiation ; UV‐irradiation</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2020-03, Vol.16 (12), p.e1903365-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4395-33bcdb46f93b657a4aa18cfa2d0cc0d7b4e66ca17067f04ece11c0b1110128ea3</citedby><cites>FETCH-LOGICAL-c4395-33bcdb46f93b657a4aa18cfa2d0cc0d7b4e66ca17067f04ece11c0b1110128ea3</cites><orcidid>0000-0003-4541-1922 ; 0000-0001-6585-8057</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31464366$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nishimura, Tatsuya</creatorcontrib><creatorcontrib>Ito, Naoyuki</creatorcontrib><creatorcontrib>Kinoshita, Kazuhiko</creatorcontrib><creatorcontrib>Matsukawa, Mizuki</creatorcontrib><creatorcontrib>Imura, Yoshiro</creatorcontrib><creatorcontrib>Kawai, Takeshi</creatorcontrib><title>Fabrication of Flexible and Transparent Conductive Nanosheets by the UV‐Irradiation of Gold Nanoparticle Monolayers</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Conductive films that are highly transparent and flexible are extremely attractive for emerging optoelectronic applications. Currently, indium‐doped tin oxide films are the most widely used transparent conductive films and much research effort is devoted to developing alternative transparent conductive materials to overcome their drawbacks. In this work, a novel and facile approach for fabricating transparent conductive Au nanosheets from Au nanoparticles (AuNPs) is proposed. Irradiating an AuNP monolayer at the air–water interface with UV light results in a nanosheet with ≈3.5 nm thickness and ≈80% transparency in the UV–visible region. Further, the so‐fabricated nanosheets are highly flexible and can maintain their electrical conductivity even when they are bent to a radius of curvature of 0.6 mm. Fourier‐transform infrared and X‐ray photoelectron spectroscopy characterizations reveal that the transformation of the monolayer of AuNPs into the nanosheet is induced by the photodecomposition and/or photodetachment of the dodecanethiol ligands capping the AuNPs. Further, the UV‐irradiation of a hybrid monolayer consisting of AuNPs and silica particles affords the patterning of Au nanosheets with periodic hole arrays. Au nanosheets with ≈3.5 nm thickness are fabricated by irradiating Au nanoparticles (AuNP) monolayers at the air–water interface with UV light. The nanosheets have excellent flexibility, transparency, and conductivity, and can be readily transferred onto various substrates. Furthermore, nanosheets patterned with periodic holes can be obtained by embedding SiO2 particles in the AuNP monolayer.</description><subject>Decomposition reactions</subject><subject>Electrical resistivity</subject><subject>Gold</subject><subject>gold nanoparticles</subject><subject>Irradiation</subject><subject>Monolayers</subject><subject>Nanoparticles</subject><subject>nanopatterning</subject><subject>Nanosheets</subject><subject>Nanotechnology</subject><subject>Optoelectronics</subject><subject>Oxide coatings</subject><subject>Photodecomposition</subject><subject>Photodetachment</subject><subject>Photoelectrons</subject><subject>Radius of curvature</subject><subject>Silicon dioxide</subject><subject>Tin oxides</subject><subject>transparent conductive ultrathin films</subject><subject>Ultraviolet radiation</subject><subject>UV‐irradiation</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkT1vFDEQQC0EIiHQUiJLNDR3jD_W3i3RiQuRLlCQ0Fq2d1Zx5LMPexe4jp_Ab-SXsOHCIdFQzRRvnkZ6hDxnsGQA_HXdxrjkwDoQQjUPyClTTCxUy7uHx53BCXlS6y2AYFzqx-REMKmkUOqUTGvrSvB2DDnRPNB1xG_BRaQ29fSq2FR3tmAa6SqnfvJj-IL0vU253iCOlbo9HW-QXn_6-f3HRSm2D0fTeY79b3QWjMHPysuccrR7LPUpeTTYWPHZ_Twj1-u3V6t3i82H84vVm83CS9E1CyGc751UQyecarSV1rLWD5b34D302klUylumQekBJHpkzINjjAHjLVpxRl4dvLuSP09YR7MN1WOMNmGequG85bLRWncz-vIf9DZPJc3fGS5aIUC3DczU8kD5kmstOJhdCVtb9oaBuQti7oKYY5D54MW9dnJb7I_4nwIz0B2AryHi_j868_Fys_kr_wWqg5nU</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Nishimura, Tatsuya</creator><creator>Ito, Naoyuki</creator><creator>Kinoshita, Kazuhiko</creator><creator>Matsukawa, Mizuki</creator><creator>Imura, Yoshiro</creator><creator>Kawai, Takeshi</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4541-1922</orcidid><orcidid>https://orcid.org/0000-0001-6585-8057</orcidid></search><sort><creationdate>20200301</creationdate><title>Fabrication of Flexible and Transparent Conductive Nanosheets by the UV‐Irradiation of Gold Nanoparticle Monolayers</title><author>Nishimura, Tatsuya ; Ito, Naoyuki ; Kinoshita, Kazuhiko ; Matsukawa, Mizuki ; Imura, Yoshiro ; Kawai, Takeshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4395-33bcdb46f93b657a4aa18cfa2d0cc0d7b4e66ca17067f04ece11c0b1110128ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Decomposition reactions</topic><topic>Electrical resistivity</topic><topic>Gold</topic><topic>gold nanoparticles</topic><topic>Irradiation</topic><topic>Monolayers</topic><topic>Nanoparticles</topic><topic>nanopatterning</topic><topic>Nanosheets</topic><topic>Nanotechnology</topic><topic>Optoelectronics</topic><topic>Oxide coatings</topic><topic>Photodecomposition</topic><topic>Photodetachment</topic><topic>Photoelectrons</topic><topic>Radius of curvature</topic><topic>Silicon dioxide</topic><topic>Tin oxides</topic><topic>transparent conductive ultrathin films</topic><topic>Ultraviolet radiation</topic><topic>UV‐irradiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishimura, Tatsuya</creatorcontrib><creatorcontrib>Ito, Naoyuki</creatorcontrib><creatorcontrib>Kinoshita, Kazuhiko</creatorcontrib><creatorcontrib>Matsukawa, Mizuki</creatorcontrib><creatorcontrib>Imura, Yoshiro</creatorcontrib><creatorcontrib>Kawai, Takeshi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishimura, Tatsuya</au><au>Ito, Naoyuki</au><au>Kinoshita, Kazuhiko</au><au>Matsukawa, Mizuki</au><au>Imura, Yoshiro</au><au>Kawai, Takeshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of Flexible and Transparent Conductive Nanosheets by the UV‐Irradiation of Gold Nanoparticle Monolayers</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>16</volume><issue>12</issue><spage>e1903365</spage><epage>n/a</epage><pages>e1903365-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Conductive films that are highly transparent and flexible are extremely attractive for emerging optoelectronic applications. Currently, indium‐doped tin oxide films are the most widely used transparent conductive films and much research effort is devoted to developing alternative transparent conductive materials to overcome their drawbacks. In this work, a novel and facile approach for fabricating transparent conductive Au nanosheets from Au nanoparticles (AuNPs) is proposed. Irradiating an AuNP monolayer at the air–water interface with UV light results in a nanosheet with ≈3.5 nm thickness and ≈80% transparency in the UV–visible region. Further, the so‐fabricated nanosheets are highly flexible and can maintain their electrical conductivity even when they are bent to a radius of curvature of 0.6 mm. Fourier‐transform infrared and X‐ray photoelectron spectroscopy characterizations reveal that the transformation of the monolayer of AuNPs into the nanosheet is induced by the photodecomposition and/or photodetachment of the dodecanethiol ligands capping the AuNPs. Further, the UV‐irradiation of a hybrid monolayer consisting of AuNPs and silica particles affords the patterning of Au nanosheets with periodic hole arrays. Au nanosheets with ≈3.5 nm thickness are fabricated by irradiating Au nanoparticles (AuNP) monolayers at the air–water interface with UV light. The nanosheets have excellent flexibility, transparency, and conductivity, and can be readily transferred onto various substrates. Furthermore, nanosheets patterned with periodic holes can be obtained by embedding SiO2 particles in the AuNP monolayer.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31464366</pmid><doi>10.1002/smll.201903365</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4541-1922</orcidid><orcidid>https://orcid.org/0000-0001-6585-8057</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2020-03, Vol.16 (12), p.e1903365-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2282457779
source Wiley-Blackwell Read & Publish Collection
subjects Decomposition reactions
Electrical resistivity
Gold
gold nanoparticles
Irradiation
Monolayers
Nanoparticles
nanopatterning
Nanosheets
Nanotechnology
Optoelectronics
Oxide coatings
Photodecomposition
Photodetachment
Photoelectrons
Radius of curvature
Silicon dioxide
Tin oxides
transparent conductive ultrathin films
Ultraviolet radiation
UV‐irradiation
title Fabrication of Flexible and Transparent Conductive Nanosheets by the UV‐Irradiation of Gold Nanoparticle Monolayers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A28%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20Flexible%20and%20Transparent%20Conductive%20Nanosheets%20by%20the%20UV%E2%80%90Irradiation%20of%20Gold%20Nanoparticle%20Monolayers&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Nishimura,%20Tatsuya&rft.date=2020-03-01&rft.volume=16&rft.issue=12&rft.spage=e1903365&rft.epage=n/a&rft.pages=e1903365-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201903365&rft_dat=%3Cproquest_cross%3E2282457779%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4395-33bcdb46f93b657a4aa18cfa2d0cc0d7b4e66ca17067f04ece11c0b1110128ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2383307850&rft_id=info:pmid/31464366&rfr_iscdi=true