Loading…
Fabrication of Flexible and Transparent Conductive Nanosheets by the UV‐Irradiation of Gold Nanoparticle Monolayers
Conductive films that are highly transparent and flexible are extremely attractive for emerging optoelectronic applications. Currently, indium‐doped tin oxide films are the most widely used transparent conductive films and much research effort is devoted to developing alternative transparent conduct...
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2020-03, Vol.16 (12), p.e1903365-n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4395-33bcdb46f93b657a4aa18cfa2d0cc0d7b4e66ca17067f04ece11c0b1110128ea3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4395-33bcdb46f93b657a4aa18cfa2d0cc0d7b4e66ca17067f04ece11c0b1110128ea3 |
container_end_page | n/a |
container_issue | 12 |
container_start_page | e1903365 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 16 |
creator | Nishimura, Tatsuya Ito, Naoyuki Kinoshita, Kazuhiko Matsukawa, Mizuki Imura, Yoshiro Kawai, Takeshi |
description | Conductive films that are highly transparent and flexible are extremely attractive for emerging optoelectronic applications. Currently, indium‐doped tin oxide films are the most widely used transparent conductive films and much research effort is devoted to developing alternative transparent conductive materials to overcome their drawbacks. In this work, a novel and facile approach for fabricating transparent conductive Au nanosheets from Au nanoparticles (AuNPs) is proposed. Irradiating an AuNP monolayer at the air–water interface with UV light results in a nanosheet with ≈3.5 nm thickness and ≈80% transparency in the UV–visible region. Further, the so‐fabricated nanosheets are highly flexible and can maintain their electrical conductivity even when they are bent to a radius of curvature of 0.6 mm. Fourier‐transform infrared and X‐ray photoelectron spectroscopy characterizations reveal that the transformation of the monolayer of AuNPs into the nanosheet is induced by the photodecomposition and/or photodetachment of the dodecanethiol ligands capping the AuNPs. Further, the UV‐irradiation of a hybrid monolayer consisting of AuNPs and silica particles affords the patterning of Au nanosheets with periodic hole arrays.
Au nanosheets with ≈3.5 nm thickness are fabricated by irradiating Au nanoparticles (AuNP) monolayers at the air–water interface with UV light. The nanosheets have excellent flexibility, transparency, and conductivity, and can be readily transferred onto various substrates. Furthermore, nanosheets patterned with periodic holes can be obtained by embedding SiO2 particles in the AuNP monolayer. |
doi_str_mv | 10.1002/smll.201903365 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2282457779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2282457779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4395-33bcdb46f93b657a4aa18cfa2d0cc0d7b4e66ca17067f04ece11c0b1110128ea3</originalsourceid><addsrcrecordid>eNqFkT1vFDEQQC0EIiHQUiJLNDR3jD_W3i3RiQuRLlCQ0Fq2d1Zx5LMPexe4jp_Ab-SXsOHCIdFQzRRvnkZ6hDxnsGQA_HXdxrjkwDoQQjUPyClTTCxUy7uHx53BCXlS6y2AYFzqx-REMKmkUOqUTGvrSvB2DDnRPNB1xG_BRaQ29fSq2FR3tmAa6SqnfvJj-IL0vU253iCOlbo9HW-QXn_6-f3HRSm2D0fTeY79b3QWjMHPysuccrR7LPUpeTTYWPHZ_Twj1-u3V6t3i82H84vVm83CS9E1CyGc751UQyecarSV1rLWD5b34D302klUylumQekBJHpkzINjjAHjLVpxRl4dvLuSP09YR7MN1WOMNmGequG85bLRWncz-vIf9DZPJc3fGS5aIUC3DczU8kD5kmstOJhdCVtb9oaBuQti7oKYY5D54MW9dnJb7I_4nwIz0B2AryHi_j868_Fys_kr_wWqg5nU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383307850</pqid></control><display><type>article</type><title>Fabrication of Flexible and Transparent Conductive Nanosheets by the UV‐Irradiation of Gold Nanoparticle Monolayers</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Nishimura, Tatsuya ; Ito, Naoyuki ; Kinoshita, Kazuhiko ; Matsukawa, Mizuki ; Imura, Yoshiro ; Kawai, Takeshi</creator><creatorcontrib>Nishimura, Tatsuya ; Ito, Naoyuki ; Kinoshita, Kazuhiko ; Matsukawa, Mizuki ; Imura, Yoshiro ; Kawai, Takeshi</creatorcontrib><description>Conductive films that are highly transparent and flexible are extremely attractive for emerging optoelectronic applications. Currently, indium‐doped tin oxide films are the most widely used transparent conductive films and much research effort is devoted to developing alternative transparent conductive materials to overcome their drawbacks. In this work, a novel and facile approach for fabricating transparent conductive Au nanosheets from Au nanoparticles (AuNPs) is proposed. Irradiating an AuNP monolayer at the air–water interface with UV light results in a nanosheet with ≈3.5 nm thickness and ≈80% transparency in the UV–visible region. Further, the so‐fabricated nanosheets are highly flexible and can maintain their electrical conductivity even when they are bent to a radius of curvature of 0.6 mm. Fourier‐transform infrared and X‐ray photoelectron spectroscopy characterizations reveal that the transformation of the monolayer of AuNPs into the nanosheet is induced by the photodecomposition and/or photodetachment of the dodecanethiol ligands capping the AuNPs. Further, the UV‐irradiation of a hybrid monolayer consisting of AuNPs and silica particles affords the patterning of Au nanosheets with periodic hole arrays.
Au nanosheets with ≈3.5 nm thickness are fabricated by irradiating Au nanoparticles (AuNP) monolayers at the air–water interface with UV light. The nanosheets have excellent flexibility, transparency, and conductivity, and can be readily transferred onto various substrates. Furthermore, nanosheets patterned with periodic holes can be obtained by embedding SiO2 particles in the AuNP monolayer.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201903365</identifier><identifier>PMID: 31464366</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Decomposition reactions ; Electrical resistivity ; Gold ; gold nanoparticles ; Irradiation ; Monolayers ; Nanoparticles ; nanopatterning ; Nanosheets ; Nanotechnology ; Optoelectronics ; Oxide coatings ; Photodecomposition ; Photodetachment ; Photoelectrons ; Radius of curvature ; Silicon dioxide ; Tin oxides ; transparent conductive ultrathin films ; Ultraviolet radiation ; UV‐irradiation</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2020-03, Vol.16 (12), p.e1903365-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4395-33bcdb46f93b657a4aa18cfa2d0cc0d7b4e66ca17067f04ece11c0b1110128ea3</citedby><cites>FETCH-LOGICAL-c4395-33bcdb46f93b657a4aa18cfa2d0cc0d7b4e66ca17067f04ece11c0b1110128ea3</cites><orcidid>0000-0003-4541-1922 ; 0000-0001-6585-8057</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31464366$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nishimura, Tatsuya</creatorcontrib><creatorcontrib>Ito, Naoyuki</creatorcontrib><creatorcontrib>Kinoshita, Kazuhiko</creatorcontrib><creatorcontrib>Matsukawa, Mizuki</creatorcontrib><creatorcontrib>Imura, Yoshiro</creatorcontrib><creatorcontrib>Kawai, Takeshi</creatorcontrib><title>Fabrication of Flexible and Transparent Conductive Nanosheets by the UV‐Irradiation of Gold Nanoparticle Monolayers</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Conductive films that are highly transparent and flexible are extremely attractive for emerging optoelectronic applications. Currently, indium‐doped tin oxide films are the most widely used transparent conductive films and much research effort is devoted to developing alternative transparent conductive materials to overcome their drawbacks. In this work, a novel and facile approach for fabricating transparent conductive Au nanosheets from Au nanoparticles (AuNPs) is proposed. Irradiating an AuNP monolayer at the air–water interface with UV light results in a nanosheet with ≈3.5 nm thickness and ≈80% transparency in the UV–visible region. Further, the so‐fabricated nanosheets are highly flexible and can maintain their electrical conductivity even when they are bent to a radius of curvature of 0.6 mm. Fourier‐transform infrared and X‐ray photoelectron spectroscopy characterizations reveal that the transformation of the monolayer of AuNPs into the nanosheet is induced by the photodecomposition and/or photodetachment of the dodecanethiol ligands capping the AuNPs. Further, the UV‐irradiation of a hybrid monolayer consisting of AuNPs and silica particles affords the patterning of Au nanosheets with periodic hole arrays.
Au nanosheets with ≈3.5 nm thickness are fabricated by irradiating Au nanoparticles (AuNP) monolayers at the air–water interface with UV light. The nanosheets have excellent flexibility, transparency, and conductivity, and can be readily transferred onto various substrates. Furthermore, nanosheets patterned with periodic holes can be obtained by embedding SiO2 particles in the AuNP monolayer.</description><subject>Decomposition reactions</subject><subject>Electrical resistivity</subject><subject>Gold</subject><subject>gold nanoparticles</subject><subject>Irradiation</subject><subject>Monolayers</subject><subject>Nanoparticles</subject><subject>nanopatterning</subject><subject>Nanosheets</subject><subject>Nanotechnology</subject><subject>Optoelectronics</subject><subject>Oxide coatings</subject><subject>Photodecomposition</subject><subject>Photodetachment</subject><subject>Photoelectrons</subject><subject>Radius of curvature</subject><subject>Silicon dioxide</subject><subject>Tin oxides</subject><subject>transparent conductive ultrathin films</subject><subject>Ultraviolet radiation</subject><subject>UV‐irradiation</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkT1vFDEQQC0EIiHQUiJLNDR3jD_W3i3RiQuRLlCQ0Fq2d1Zx5LMPexe4jp_Ab-SXsOHCIdFQzRRvnkZ6hDxnsGQA_HXdxrjkwDoQQjUPyClTTCxUy7uHx53BCXlS6y2AYFzqx-REMKmkUOqUTGvrSvB2DDnRPNB1xG_BRaQ29fSq2FR3tmAa6SqnfvJj-IL0vU253iCOlbo9HW-QXn_6-f3HRSm2D0fTeY79b3QWjMHPysuccrR7LPUpeTTYWPHZ_Twj1-u3V6t3i82H84vVm83CS9E1CyGc751UQyecarSV1rLWD5b34D302klUylumQekBJHpkzINjjAHjLVpxRl4dvLuSP09YR7MN1WOMNmGequG85bLRWncz-vIf9DZPJc3fGS5aIUC3DczU8kD5kmstOJhdCVtb9oaBuQti7oKYY5D54MW9dnJb7I_4nwIz0B2AryHi_j868_Fys_kr_wWqg5nU</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Nishimura, Tatsuya</creator><creator>Ito, Naoyuki</creator><creator>Kinoshita, Kazuhiko</creator><creator>Matsukawa, Mizuki</creator><creator>Imura, Yoshiro</creator><creator>Kawai, Takeshi</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4541-1922</orcidid><orcidid>https://orcid.org/0000-0001-6585-8057</orcidid></search><sort><creationdate>20200301</creationdate><title>Fabrication of Flexible and Transparent Conductive Nanosheets by the UV‐Irradiation of Gold Nanoparticle Monolayers</title><author>Nishimura, Tatsuya ; Ito, Naoyuki ; Kinoshita, Kazuhiko ; Matsukawa, Mizuki ; Imura, Yoshiro ; Kawai, Takeshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4395-33bcdb46f93b657a4aa18cfa2d0cc0d7b4e66ca17067f04ece11c0b1110128ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Decomposition reactions</topic><topic>Electrical resistivity</topic><topic>Gold</topic><topic>gold nanoparticles</topic><topic>Irradiation</topic><topic>Monolayers</topic><topic>Nanoparticles</topic><topic>nanopatterning</topic><topic>Nanosheets</topic><topic>Nanotechnology</topic><topic>Optoelectronics</topic><topic>Oxide coatings</topic><topic>Photodecomposition</topic><topic>Photodetachment</topic><topic>Photoelectrons</topic><topic>Radius of curvature</topic><topic>Silicon dioxide</topic><topic>Tin oxides</topic><topic>transparent conductive ultrathin films</topic><topic>Ultraviolet radiation</topic><topic>UV‐irradiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishimura, Tatsuya</creatorcontrib><creatorcontrib>Ito, Naoyuki</creatorcontrib><creatorcontrib>Kinoshita, Kazuhiko</creatorcontrib><creatorcontrib>Matsukawa, Mizuki</creatorcontrib><creatorcontrib>Imura, Yoshiro</creatorcontrib><creatorcontrib>Kawai, Takeshi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishimura, Tatsuya</au><au>Ito, Naoyuki</au><au>Kinoshita, Kazuhiko</au><au>Matsukawa, Mizuki</au><au>Imura, Yoshiro</au><au>Kawai, Takeshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of Flexible and Transparent Conductive Nanosheets by the UV‐Irradiation of Gold Nanoparticle Monolayers</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>16</volume><issue>12</issue><spage>e1903365</spage><epage>n/a</epage><pages>e1903365-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Conductive films that are highly transparent and flexible are extremely attractive for emerging optoelectronic applications. Currently, indium‐doped tin oxide films are the most widely used transparent conductive films and much research effort is devoted to developing alternative transparent conductive materials to overcome their drawbacks. In this work, a novel and facile approach for fabricating transparent conductive Au nanosheets from Au nanoparticles (AuNPs) is proposed. Irradiating an AuNP monolayer at the air–water interface with UV light results in a nanosheet with ≈3.5 nm thickness and ≈80% transparency in the UV–visible region. Further, the so‐fabricated nanosheets are highly flexible and can maintain their electrical conductivity even when they are bent to a radius of curvature of 0.6 mm. Fourier‐transform infrared and X‐ray photoelectron spectroscopy characterizations reveal that the transformation of the monolayer of AuNPs into the nanosheet is induced by the photodecomposition and/or photodetachment of the dodecanethiol ligands capping the AuNPs. Further, the UV‐irradiation of a hybrid monolayer consisting of AuNPs and silica particles affords the patterning of Au nanosheets with periodic hole arrays.
Au nanosheets with ≈3.5 nm thickness are fabricated by irradiating Au nanoparticles (AuNP) monolayers at the air–water interface with UV light. The nanosheets have excellent flexibility, transparency, and conductivity, and can be readily transferred onto various substrates. Furthermore, nanosheets patterned with periodic holes can be obtained by embedding SiO2 particles in the AuNP monolayer.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31464366</pmid><doi>10.1002/smll.201903365</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4541-1922</orcidid><orcidid>https://orcid.org/0000-0001-6585-8057</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2020-03, Vol.16 (12), p.e1903365-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2282457779 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Decomposition reactions Electrical resistivity Gold gold nanoparticles Irradiation Monolayers Nanoparticles nanopatterning Nanosheets Nanotechnology Optoelectronics Oxide coatings Photodecomposition Photodetachment Photoelectrons Radius of curvature Silicon dioxide Tin oxides transparent conductive ultrathin films Ultraviolet radiation UV‐irradiation |
title | Fabrication of Flexible and Transparent Conductive Nanosheets by the UV‐Irradiation of Gold Nanoparticle Monolayers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A28%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20Flexible%20and%20Transparent%20Conductive%20Nanosheets%20by%20the%20UV%E2%80%90Irradiation%20of%20Gold%20Nanoparticle%20Monolayers&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Nishimura,%20Tatsuya&rft.date=2020-03-01&rft.volume=16&rft.issue=12&rft.spage=e1903365&rft.epage=n/a&rft.pages=e1903365-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201903365&rft_dat=%3Cproquest_cross%3E2282457779%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4395-33bcdb46f93b657a4aa18cfa2d0cc0d7b4e66ca17067f04ece11c0b1110128ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2383307850&rft_id=info:pmid/31464366&rfr_iscdi=true |