Loading…

Field-Effect Controllable Metallic Josephson Interferometer

Gate-tunable Josephson junctions (JJs) are the backbone of superconducting classical and quantum computation. Typically, these systems exploit low-charge-concentration materials and present technological difficulties limiting their scalability. Surprisingly, electric field modulation of a supercurre...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2019-09, Vol.19 (9), p.6263-6269
Main Authors: Paolucci, Federico, Vischi, Francesco, De Simoni, Giorgio, Guarcello, Claudio, Solinas, Paolo, Giazotto, Francesco
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a348t-6e3e9a3a230d76dc3a5203e14e1c9197b4b01a852a48a0192e087809c4a6d2d3
cites cdi_FETCH-LOGICAL-a348t-6e3e9a3a230d76dc3a5203e14e1c9197b4b01a852a48a0192e087809c4a6d2d3
container_end_page 6269
container_issue 9
container_start_page 6263
container_title Nano letters
container_volume 19
creator Paolucci, Federico
Vischi, Francesco
De Simoni, Giorgio
Guarcello, Claudio
Solinas, Paolo
Giazotto, Francesco
description Gate-tunable Josephson junctions (JJs) are the backbone of superconducting classical and quantum computation. Typically, these systems exploit low-charge-concentration materials and present technological difficulties limiting their scalability. Surprisingly, electric field modulation of a supercurrent in metallic wires and JJs has been recently demonstrated. Here, we report the realization of titanium-based monolithic interferometers which allow tuning both JJs independently via voltage bias applied to capacitively coupled electrodes. Our experiments demonstrate full control of the amplitude of the switching current (I s) and of the superconducting phase across the single JJ in a wide range of temperatures. Astoundingly, by gate-biasing a single junction, the maximum achievable total I s is suppressed down to values much lower than the critical current of a single JJ. A theoretical model including gate-induced phase fluctuations on a single junction accounts for our experimental findings. This class of quantum interferometers could represent a breakthrough for several applications such as digital electronics, quantum computing, sensitive magnetometry, and single-photon detection.
doi_str_mv 10.1021/acs.nanolett.9b02369
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2282508561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2282508561</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-6e3e9a3a230d76dc3a5203e14e1c9197b4b01a852a48a0192e087809c4a6d2d3</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EoqXwDRDqyJJy_pPUFhOqWigqYuluOc5FpHLiYjsD355ULR2Z7g3vvbv7EXJPYUaB0Sdj46wznXeY0kyVwHihLsiY5hyyQil2edZSjMhNjDsAUDyHazLiVBSUKRiT51WDrsqWdY02TRe-S8E7Z0qH0w9MxrnGTt99xP1X9N103SUMNQbf4iBuyVVtXMS705yQ7Wq5Xbxlm8_X9eJlkxkuZMoK5KgMN4xDNS8qy03OgCMVSK2ial6KEqiROTNCGqCKIci5BGWFKSpW8Ql5PNbug__uMSbdNtHicGWHvo-aMclykHlBB6s4Wm3wMQas9T40rQk_moI-UNMDNf1HTZ-oDbGH04a-bLE6h_4wDQY4Gg7xne9DN_z7f-cvBjJ7uA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2282508561</pqid></control><display><type>article</type><title>Field-Effect Controllable Metallic Josephson Interferometer</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Paolucci, Federico ; Vischi, Francesco ; De Simoni, Giorgio ; Guarcello, Claudio ; Solinas, Paolo ; Giazotto, Francesco</creator><creatorcontrib>Paolucci, Federico ; Vischi, Francesco ; De Simoni, Giorgio ; Guarcello, Claudio ; Solinas, Paolo ; Giazotto, Francesco</creatorcontrib><description>Gate-tunable Josephson junctions (JJs) are the backbone of superconducting classical and quantum computation. Typically, these systems exploit low-charge-concentration materials and present technological difficulties limiting their scalability. Surprisingly, electric field modulation of a supercurrent in metallic wires and JJs has been recently demonstrated. Here, we report the realization of titanium-based monolithic interferometers which allow tuning both JJs independently via voltage bias applied to capacitively coupled electrodes. Our experiments demonstrate full control of the amplitude of the switching current (I s) and of the superconducting phase across the single JJ in a wide range of temperatures. Astoundingly, by gate-biasing a single junction, the maximum achievable total I s is suppressed down to values much lower than the critical current of a single JJ. A theoretical model including gate-induced phase fluctuations on a single junction accounts for our experimental findings. This class of quantum interferometers could represent a breakthrough for several applications such as digital electronics, quantum computing, sensitive magnetometry, and single-photon detection.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.9b02369</identifier><identifier>PMID: 31461290</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2019-09, Vol.19 (9), p.6263-6269</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-6e3e9a3a230d76dc3a5203e14e1c9197b4b01a852a48a0192e087809c4a6d2d3</citedby><cites>FETCH-LOGICAL-a348t-6e3e9a3a230d76dc3a5203e14e1c9197b4b01a852a48a0192e087809c4a6d2d3</cites><orcidid>0000-0002-3683-2509 ; 0000-0002-2115-8013 ; 0000-0001-8354-4975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31461290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paolucci, Federico</creatorcontrib><creatorcontrib>Vischi, Francesco</creatorcontrib><creatorcontrib>De Simoni, Giorgio</creatorcontrib><creatorcontrib>Guarcello, Claudio</creatorcontrib><creatorcontrib>Solinas, Paolo</creatorcontrib><creatorcontrib>Giazotto, Francesco</creatorcontrib><title>Field-Effect Controllable Metallic Josephson Interferometer</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Gate-tunable Josephson junctions (JJs) are the backbone of superconducting classical and quantum computation. Typically, these systems exploit low-charge-concentration materials and present technological difficulties limiting their scalability. Surprisingly, electric field modulation of a supercurrent in metallic wires and JJs has been recently demonstrated. Here, we report the realization of titanium-based monolithic interferometers which allow tuning both JJs independently via voltage bias applied to capacitively coupled electrodes. Our experiments demonstrate full control of the amplitude of the switching current (I s) and of the superconducting phase across the single JJ in a wide range of temperatures. Astoundingly, by gate-biasing a single junction, the maximum achievable total I s is suppressed down to values much lower than the critical current of a single JJ. A theoretical model including gate-induced phase fluctuations on a single junction accounts for our experimental findings. This class of quantum interferometers could represent a breakthrough for several applications such as digital electronics, quantum computing, sensitive magnetometry, and single-photon detection.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EoqXwDRDqyJJy_pPUFhOqWigqYuluOc5FpHLiYjsD355ULR2Z7g3vvbv7EXJPYUaB0Sdj46wznXeY0kyVwHihLsiY5hyyQil2edZSjMhNjDsAUDyHazLiVBSUKRiT51WDrsqWdY02TRe-S8E7Z0qH0w9MxrnGTt99xP1X9N103SUMNQbf4iBuyVVtXMS705yQ7Wq5Xbxlm8_X9eJlkxkuZMoK5KgMN4xDNS8qy03OgCMVSK2ial6KEqiROTNCGqCKIci5BGWFKSpW8Ql5PNbug__uMSbdNtHicGWHvo-aMclykHlBB6s4Wm3wMQas9T40rQk_moI-UNMDNf1HTZ-oDbGH04a-bLE6h_4wDQY4Gg7xne9DN_z7f-cvBjJ7uA</recordid><startdate>20190911</startdate><enddate>20190911</enddate><creator>Paolucci, Federico</creator><creator>Vischi, Francesco</creator><creator>De Simoni, Giorgio</creator><creator>Guarcello, Claudio</creator><creator>Solinas, Paolo</creator><creator>Giazotto, Francesco</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3683-2509</orcidid><orcidid>https://orcid.org/0000-0002-2115-8013</orcidid><orcidid>https://orcid.org/0000-0001-8354-4975</orcidid></search><sort><creationdate>20190911</creationdate><title>Field-Effect Controllable Metallic Josephson Interferometer</title><author>Paolucci, Federico ; Vischi, Francesco ; De Simoni, Giorgio ; Guarcello, Claudio ; Solinas, Paolo ; Giazotto, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-6e3e9a3a230d76dc3a5203e14e1c9197b4b01a852a48a0192e087809c4a6d2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paolucci, Federico</creatorcontrib><creatorcontrib>Vischi, Francesco</creatorcontrib><creatorcontrib>De Simoni, Giorgio</creatorcontrib><creatorcontrib>Guarcello, Claudio</creatorcontrib><creatorcontrib>Solinas, Paolo</creatorcontrib><creatorcontrib>Giazotto, Francesco</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paolucci, Federico</au><au>Vischi, Francesco</au><au>De Simoni, Giorgio</au><au>Guarcello, Claudio</au><au>Solinas, Paolo</au><au>Giazotto, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Field-Effect Controllable Metallic Josephson Interferometer</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2019-09-11</date><risdate>2019</risdate><volume>19</volume><issue>9</issue><spage>6263</spage><epage>6269</epage><pages>6263-6269</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Gate-tunable Josephson junctions (JJs) are the backbone of superconducting classical and quantum computation. Typically, these systems exploit low-charge-concentration materials and present technological difficulties limiting their scalability. Surprisingly, electric field modulation of a supercurrent in metallic wires and JJs has been recently demonstrated. Here, we report the realization of titanium-based monolithic interferometers which allow tuning both JJs independently via voltage bias applied to capacitively coupled electrodes. Our experiments demonstrate full control of the amplitude of the switching current (I s) and of the superconducting phase across the single JJ in a wide range of temperatures. Astoundingly, by gate-biasing a single junction, the maximum achievable total I s is suppressed down to values much lower than the critical current of a single JJ. A theoretical model including gate-induced phase fluctuations on a single junction accounts for our experimental findings. This class of quantum interferometers could represent a breakthrough for several applications such as digital electronics, quantum computing, sensitive magnetometry, and single-photon detection.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31461290</pmid><doi>10.1021/acs.nanolett.9b02369</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3683-2509</orcidid><orcidid>https://orcid.org/0000-0002-2115-8013</orcidid><orcidid>https://orcid.org/0000-0001-8354-4975</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2019-09, Vol.19 (9), p.6263-6269
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2282508561
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Field-Effect Controllable Metallic Josephson Interferometer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A50%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Field-Effect%20Controllable%20Metallic%20Josephson%20Interferometer&rft.jtitle=Nano%20letters&rft.au=Paolucci,%20Federico&rft.date=2019-09-11&rft.volume=19&rft.issue=9&rft.spage=6263&rft.epage=6269&rft.pages=6263-6269&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.9b02369&rft_dat=%3Cproquest_cross%3E2282508561%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a348t-6e3e9a3a230d76dc3a5203e14e1c9197b4b01a852a48a0192e087809c4a6d2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2282508561&rft_id=info:pmid/31461290&rfr_iscdi=true