Loading…

Amphiphilic Polymer-Mediated Aggregation-Induced Emission Nanoparticles for Highly Sensitive Organophosphorus Pesticide Biosensing

Biosensing applications require signal reporters to be sufficiently stable and biosafe as well as highly efficient. Aggregation-induced emission (AIE) nanoparticles have proven to be capable of cell-imaging and cancer therapy; however, realizing sensitive detection of biomolecules remains a great ch...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2019-09, Vol.11 (36), p.32689-32696
Main Authors: Chen, Jianling, Chen, Xiaojie, Huang, Qiuyi, Li, Wenlang, Yu, Qiaoxi, Zhu, Longji, Zhu, Tianwen, Liu, Siwei, Chi, Zhenguo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Biosensing applications require signal reporters to be sufficiently stable and biosafe as well as highly efficient. Aggregation-induced emission (AIE) nanoparticles have proven to be capable of cell-imaging and cancer therapy; however, realizing sensitive detection of biomolecules remains a great challenge because of their instability, biotoxicity, and lack of modifiable functional groups. Herein, we report a self-assembling strategy to fabricate AIE nanoparticles (PTDNPs) through the dispersion of amphiphilic polymers (PTDs) in phosphate-buffered saline. The PTDs were prepared through radical copolymerization of N-(1,2,2-triphenylvinyl)-4-acetylaniline and dimethyl diallyl ammonium chloride. We found that the particle size, morphology, functional groups, and fluorescence property of PTDNPs can be fine-tuned. Further, PTDNPs-0.10 were chosen as signal reporters to detect organophosphorus pesticides (OPs) with the aid of gold nanoparticles. Their sensing performance on OPs is superior to that using C-dot/quantum dot/rhodamine B as the signal reporter. This study not only provides new possibilities to fabricate novel AIE nanoparticles with exceptional properties, but also facilitates the AIE nanoparticle’s application for target analyte biosensing.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.9b10237