Loading…
Acclimation capability inferred by metabolic performance in two sea cucumber species from different latitudes
The notion that thermal specialists from tropical regions live closer to their temperature limits than temperate eurytherms, seems too generalized. Species specific differences in physiological and biochemical stress reactions are linked to key components of organism fitness, like metabolic capacity...
Saved in:
Published in: | Journal of thermal biology 2019-08, Vol.84, p.407-413 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The notion that thermal specialists from tropical regions live closer to their temperature limits than temperate eurytherms, seems too generalized. Species specific differences in physiological and biochemical stress reactions are linked to key components of organism fitness, like metabolic capacity, which indicates that acclimation potential across latitudes might be highly diverse rather than simplistic. In this study the exposure of a tropical (Holothuria scabra) and a temperate (Holothuria forskali) sea cucumber species to identical cold- and warm-acclimation stress was compared using the key metabolic parameters, respiration rate, enzyme activity (ETS, LDH, IDH), and energy reserve fractions (lipid, carbohydrate and protein). Results show much broader respiratory adjustments, as response to temperature change, in H. scabra (2–30 μgO2*gww−1*h−1) compared to H. forskali (1.5–6.6 μgO2*gww−1*h−1). Moreover, the tropical species showed clearly pronounced up and down regulation of metabolic enzymes and shifts in energy reserves, due to thermal acclimation, while the same metabolic indicators remained consistent in the temperate species. In summary, these findings indicate enhanced metabolic plasticity in H. scabra at the cost of elevated energy expenditures, which seems to favor the tropical stenotherm in terms of thermal acclimation capacity. The comparison of such holistic metabolic analyses between conspecifics and congeners, may help to predict the heterogeneous effects of global temperature changes across latitudinal gradients.
•Prediction of thermal acclimation capability through multi-level metabolic changes.•Higher energetic burden for the tropical species compared to the temperate species.•More enhanced acclamatory capacity of the tropical stenotherm. |
---|---|
ISSN: | 0306-4565 1879-0992 |
DOI: | 10.1016/j.jtherbio.2019.07.019 |