Loading…
Nanopolystyrene-induced microRNAs response in Caenorhabditis elegans after long-term and lose-dose exposure
microRNAs (miRNAs) usually act post-transcriptionally to suppress the expression of many targeted genes. However, the response of miRNAs to nanoplastics is still unclear. We here employed Caenorhabditis elegans to investigate the response of miRNAs to 100 nm nanopolystyrene at a predicted environmen...
Saved in:
Published in: | The Science of the total environment 2019-12, Vol.697, p.134131-134131, Article 134131 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | microRNAs (miRNAs) usually act post-transcriptionally to suppress the expression of many targeted genes. However, the response of miRNAs to nanoplastics is still unclear. We here employed Caenorhabditis elegans to investigate the response of miRNAs to 100 nm nanopolystyrene at a predicted environmental concentration (1 μg/L). After exposure from L1-larvae to adult day-3, we found that 7 miRNAs (4 down-regulated (mir-39, mir-76, mir-794, and mir-1830) and 3 up-regulated (mir-35, mir-38, and mir-354)) were dysregulated by nanopolystyrene. Expressions of these 7 miRNAs were dose-dependent in nematodes exposed to 1–100 μg/L nanopolystyrene. Among these 7 miRNAs, we found that only mir-35, mir-38, mir-76, mir-354, and mir-794 were involved in the regulation of response to nanopolystyrene based on phenotypic analysis of both transgenic strains and mutant nematodes. Overexpression of mir-35, mir-38, or mir-354 induced a resistance to nanopolystyrene toxicity, and overexpression of mir-76 or mir-794 induced a susceptibility to nanopolystyrene toxicity, which suggested that these 5 miRNAs mediated a protective response to nanopolystyrene. Gene ontology and KEGG analysis further implied that mir-35, mir-38, mir-76, mir-354, and mir-794 were associated with various biological processes and signaling pathways. Our results suggest the crucial role of a certain number of miRNAs in response to nanopolystyrene after long-term and low-dose exposure in organisms.
In nematodes, long-term and low-dose exposure to nanopolystyrene caused the response of limited number of miRNAs. [Display omitted]
•miRNAs responses to nanopolystyrene were investigated in nematode C. elegans.•We identified only 7 miRNAs in response to nanopolystyrene (1 μg/L).•We confirmed functions of 5 miRNAs in regulating the nanopolystyrene toxicity. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2019.134131 |