Loading…
Retrieving Ideal Precision in Noisy Quantum Optical Metrology
Quantum metrology employs quantum effects to attain a measurement precision surpassing the limit achievable in classical physics. However, it was previously found that the precision returns the shot-noise limit (SNL) from the ideal Zeno limit (ZL) due to the photon loss in quantum metrology based on...
Saved in:
Published in: | Physical review letters 2019-07, Vol.123 (4), p.040402-040402, Article 040402 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quantum metrology employs quantum effects to attain a measurement precision surpassing the limit achievable in classical physics. However, it was previously found that the precision returns the shot-noise limit (SNL) from the ideal Zeno limit (ZL) due to the photon loss in quantum metrology based on Mech-Zehnder interferometry. Here, we find that not only can the SNL be beaten, but also the ZL can be asymptotically recovered in a long-encoding-time condition when the photon dissipation is exactly studied in its inherent non-Markovian manner. Our analysis reveals that it is due to the formation of a bound state of the photonic system and its dissipative noise. Highlighting the microscopic mechanism of the dissipative noise on the quantum optical metrology, our result supplies a guideline to realize the ultrasensitive measurement in practice by forming the bound state in the setting of reservoir engineering. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.123.040402 |