Loading…

Multi-omics reveal various potential antimonate reductases from phylogenetically diverse microorganisms

While previous work has demonstrated that antimonate (Sb(V)) can be bio-reduced with methane as the sole electron donor, the microorganisms responsible for Sb(V) reduction remain largely uncharacterized. Inspired by the recently reported Sb(V) reductase belonging to the dimethyl sulfoxide reductase...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2019-11, Vol.103 (21-22), p.9119-9129
Main Authors: Shi, Ling-Dong, Wang, Min, Han, Yu-Lin, Lai, Chun-Yu, Shapleigh, James P., Zhao, He-Ping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c513t-f5cf5ad3c7424064c8b30f7282cb49eb0f945c041fbc5c6268217a82bb9193723
cites cdi_FETCH-LOGICAL-c513t-f5cf5ad3c7424064c8b30f7282cb49eb0f945c041fbc5c6268217a82bb9193723
container_end_page 9129
container_issue 21-22
container_start_page 9119
container_title Applied microbiology and biotechnology
container_volume 103
creator Shi, Ling-Dong
Wang, Min
Han, Yu-Lin
Lai, Chun-Yu
Shapleigh, James P.
Zhao, He-Ping
description While previous work has demonstrated that antimonate (Sb(V)) can be bio-reduced with methane as the sole electron donor, the microorganisms responsible for Sb(V) reduction remain largely uncharacterized. Inspired by the recently reported Sb(V) reductase belonging to the dimethyl sulfoxide reductase (DMSOR) family, this study was undertaken to use metagenomics and metatranscriptomics to unravel whether any DMSOR family genes in the bioreactor had the potential for Sb(V) reduction. A search through metagenomic-assembled genomes recovered from the microbial community found that some DMSOR family genes, designated sbrA ( Sb (V) r eductase gene), were highly transcribed in four phylogenetically disparate assemblies. The putative catalytic subunits were found to be representatives of two distinct phylogenetic clades of reductases that were most closely related to periplasmic nitrate reductases and respiratory arsenate reductases, respectively. Putative operons containing sbrA possessed many other components, including genes encoding c -type cytochromes, response regulators, and ferredoxins, which together implement Sb(V) reduction. This predicted ability was confirmed by incubating the enrichment culture with 13 C-labeled CH 4 and Sb(V) in serum bottles, where Sb(V) was reduced coincident with the production of 13 C-labeled CO 2 . Overall, these results increase our understanding of how Sb(V) can be bio-reduced in environments.
doi_str_mv 10.1007/s00253-019-10111-x
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2288005983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A605654834</galeid><sourcerecordid>A605654834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-f5cf5ad3c7424064c8b30f7282cb49eb0f945c041fbc5c6268217a82bb9193723</originalsourceid><addsrcrecordid>eNp9kluLFDEQhYMo7rj6B3yQBl_0oddcu9OPy-JlYUXw8hzSmUqbpbszJulh5t9b46wuIyJ5KEi-U-ScKkKeM3rBKG3fZEq5EjVlXc0oY6zePSArJgWvacPkQ7KirFV1qzp9Rp7kfEsp47ppHpMzwRSqRLciw8dlLKGOU3C5SrAFO1Zbm0JccrWJBeYS8MZimeJsCyCzXlyxGXLlU5yqzff9GAeYoQRnx3FfrcMWUoYKO6YY02DnkKf8lDzydszw7K6ek2_v3n69-lDffHp_fXV5UzvFRKm9cl7ZtXCt5JI20uleUN9yzV0vO-ip76RyVDLfO-Ua3mjOWqt533fop-XinLw69t2k-GOBXMwUsoNxtDOgJ8O51pRiJALRl3-ht3FJM_7uQLUcE9X8nhrsCCbMPpZk3aGpuWyoapTUQiJ18Q8KzxowhziDD3h_Inh9IkCmwK4MdsnZXH_5fMryI4uB5pzAm00Kk017w6g5bII5boLBmZpfm2B2KHpx527pJ1j_kfwePQLiCGR8mgdI9_b_0_YnJTe96Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287211182</pqid></control><display><type>article</type><title>Multi-omics reveal various potential antimonate reductases from phylogenetically diverse microorganisms</title><source>ABI/INFORM Global</source><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Shi, Ling-Dong ; Wang, Min ; Han, Yu-Lin ; Lai, Chun-Yu ; Shapleigh, James P. ; Zhao, He-Ping</creator><creatorcontrib>Shi, Ling-Dong ; Wang, Min ; Han, Yu-Lin ; Lai, Chun-Yu ; Shapleigh, James P. ; Zhao, He-Ping</creatorcontrib><description>While previous work has demonstrated that antimonate (Sb(V)) can be bio-reduced with methane as the sole electron donor, the microorganisms responsible for Sb(V) reduction remain largely uncharacterized. Inspired by the recently reported Sb(V) reductase belonging to the dimethyl sulfoxide reductase (DMSOR) family, this study was undertaken to use metagenomics and metatranscriptomics to unravel whether any DMSOR family genes in the bioreactor had the potential for Sb(V) reduction. A search through metagenomic-assembled genomes recovered from the microbial community found that some DMSOR family genes, designated sbrA ( Sb (V) r eductase gene), were highly transcribed in four phylogenetically disparate assemblies. The putative catalytic subunits were found to be representatives of two distinct phylogenetic clades of reductases that were most closely related to periplasmic nitrate reductases and respiratory arsenate reductases, respectively. Putative operons containing sbrA possessed many other components, including genes encoding c -type cytochromes, response regulators, and ferredoxins, which together implement Sb(V) reduction. This predicted ability was confirmed by incubating the enrichment culture with 13 C-labeled CH 4 and Sb(V) in serum bottles, where Sb(V) was reduced coincident with the production of 13 C-labeled CO 2 . Overall, these results increase our understanding of how Sb(V) can be bio-reduced in environments.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-019-10111-x</identifier><identifier>PMID: 31501939</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Antimony ; Antimony - metabolism ; Arsenates ; Bacteria - classification ; Bacteria - enzymology ; Bacteria - genetics ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biomedical and Life Sciences ; Bioreactors ; Biotechnology ; Carbon dioxide ; Catalysis ; Catalytic subunits ; Cytochromes ; Dimethyl sulfoxide ; Dimethyl sulfoxide reductase ; Environmental Biotechnology ; Enzymes ; Genes ; Genetic aspects ; Genetic transcription ; Genomes ; Genomics ; Identification and classification ; Life Sciences ; Methane ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Multigene Family ; Operon ; Operons ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; Phylogeny ; Reductases ; Reduction ; Regulators</subject><ispartof>Applied microbiology and biotechnology, 2019-11, Vol.103 (21-22), p.9119-9129</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Applied Microbiology and Biotechnology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-f5cf5ad3c7424064c8b30f7282cb49eb0f945c041fbc5c6268217a82bb9193723</citedby><cites>FETCH-LOGICAL-c513t-f5cf5ad3c7424064c8b30f7282cb49eb0f945c041fbc5c6268217a82bb9193723</cites><orcidid>0000-0002-5177-8010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2287211182/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2287211182?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11686,27922,27923,36058,36059,44361,74665</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31501939$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Ling-Dong</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Han, Yu-Lin</creatorcontrib><creatorcontrib>Lai, Chun-Yu</creatorcontrib><creatorcontrib>Shapleigh, James P.</creatorcontrib><creatorcontrib>Zhao, He-Ping</creatorcontrib><title>Multi-omics reveal various potential antimonate reductases from phylogenetically diverse microorganisms</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>While previous work has demonstrated that antimonate (Sb(V)) can be bio-reduced with methane as the sole electron donor, the microorganisms responsible for Sb(V) reduction remain largely uncharacterized. Inspired by the recently reported Sb(V) reductase belonging to the dimethyl sulfoxide reductase (DMSOR) family, this study was undertaken to use metagenomics and metatranscriptomics to unravel whether any DMSOR family genes in the bioreactor had the potential for Sb(V) reduction. A search through metagenomic-assembled genomes recovered from the microbial community found that some DMSOR family genes, designated sbrA ( Sb (V) r eductase gene), were highly transcribed in four phylogenetically disparate assemblies. The putative catalytic subunits were found to be representatives of two distinct phylogenetic clades of reductases that were most closely related to periplasmic nitrate reductases and respiratory arsenate reductases, respectively. Putative operons containing sbrA possessed many other components, including genes encoding c -type cytochromes, response regulators, and ferredoxins, which together implement Sb(V) reduction. This predicted ability was confirmed by incubating the enrichment culture with 13 C-labeled CH 4 and Sb(V) in serum bottles, where Sb(V) was reduced coincident with the production of 13 C-labeled CO 2 . Overall, these results increase our understanding of how Sb(V) can be bio-reduced in environments.</description><subject>Analysis</subject><subject>Antimony</subject><subject>Antimony - metabolism</subject><subject>Arsenates</subject><subject>Bacteria - classification</subject><subject>Bacteria - enzymology</subject><subject>Bacteria - genetics</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Catalytic subunits</subject><subject>Cytochromes</subject><subject>Dimethyl sulfoxide</subject><subject>Dimethyl sulfoxide reductase</subject><subject>Environmental Biotechnology</subject><subject>Enzymes</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic transcription</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Identification and classification</subject><subject>Life Sciences</subject><subject>Methane</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Multigene Family</subject><subject>Operon</subject><subject>Operons</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>Phylogeny</subject><subject>Reductases</subject><subject>Reduction</subject><subject>Regulators</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kluLFDEQhYMo7rj6B3yQBl_0oddcu9OPy-JlYUXw8hzSmUqbpbszJulh5t9b46wuIyJ5KEi-U-ScKkKeM3rBKG3fZEq5EjVlXc0oY6zePSArJgWvacPkQ7KirFV1qzp9Rp7kfEsp47ppHpMzwRSqRLciw8dlLKGOU3C5SrAFO1Zbm0JccrWJBeYS8MZimeJsCyCzXlyxGXLlU5yqzff9GAeYoQRnx3FfrcMWUoYKO6YY02DnkKf8lDzydszw7K6ek2_v3n69-lDffHp_fXV5UzvFRKm9cl7ZtXCt5JI20uleUN9yzV0vO-ip76RyVDLfO-Ua3mjOWqt533fop-XinLw69t2k-GOBXMwUsoNxtDOgJ8O51pRiJALRl3-ht3FJM_7uQLUcE9X8nhrsCCbMPpZk3aGpuWyoapTUQiJ18Q8KzxowhziDD3h_Inh9IkCmwK4MdsnZXH_5fMryI4uB5pzAm00Kk017w6g5bII5boLBmZpfm2B2KHpx527pJ1j_kfwePQLiCGR8mgdI9_b_0_YnJTe96Q</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Shi, Ling-Dong</creator><creator>Wang, Min</creator><creator>Han, Yu-Lin</creator><creator>Lai, Chun-Yu</creator><creator>Shapleigh, James P.</creator><creator>Zhao, He-Ping</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5177-8010</orcidid></search><sort><creationdate>20191101</creationdate><title>Multi-omics reveal various potential antimonate reductases from phylogenetically diverse microorganisms</title><author>Shi, Ling-Dong ; Wang, Min ; Han, Yu-Lin ; Lai, Chun-Yu ; Shapleigh, James P. ; Zhao, He-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-f5cf5ad3c7424064c8b30f7282cb49eb0f945c041fbc5c6268217a82bb9193723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Antimony</topic><topic>Antimony - metabolism</topic><topic>Arsenates</topic><topic>Bacteria - classification</topic><topic>Bacteria - enzymology</topic><topic>Bacteria - genetics</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Catalytic subunits</topic><topic>Cytochromes</topic><topic>Dimethyl sulfoxide</topic><topic>Dimethyl sulfoxide reductase</topic><topic>Environmental Biotechnology</topic><topic>Enzymes</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic transcription</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Identification and classification</topic><topic>Life Sciences</topic><topic>Methane</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Multigene Family</topic><topic>Operon</topic><topic>Operons</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>Phylogeny</topic><topic>Reductases</topic><topic>Reduction</topic><topic>Regulators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Ling-Dong</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Han, Yu-Lin</creatorcontrib><creatorcontrib>Lai, Chun-Yu</creatorcontrib><creatorcontrib>Shapleigh, James P.</creatorcontrib><creatorcontrib>Zhao, He-Ping</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Ling-Dong</au><au>Wang, Min</au><au>Han, Yu-Lin</au><au>Lai, Chun-Yu</au><au>Shapleigh, James P.</au><au>Zhao, He-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-omics reveal various potential antimonate reductases from phylogenetically diverse microorganisms</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>103</volume><issue>21-22</issue><spage>9119</spage><epage>9129</epage><pages>9119-9129</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>While previous work has demonstrated that antimonate (Sb(V)) can be bio-reduced with methane as the sole electron donor, the microorganisms responsible for Sb(V) reduction remain largely uncharacterized. Inspired by the recently reported Sb(V) reductase belonging to the dimethyl sulfoxide reductase (DMSOR) family, this study was undertaken to use metagenomics and metatranscriptomics to unravel whether any DMSOR family genes in the bioreactor had the potential for Sb(V) reduction. A search through metagenomic-assembled genomes recovered from the microbial community found that some DMSOR family genes, designated sbrA ( Sb (V) r eductase gene), were highly transcribed in four phylogenetically disparate assemblies. The putative catalytic subunits were found to be representatives of two distinct phylogenetic clades of reductases that were most closely related to periplasmic nitrate reductases and respiratory arsenate reductases, respectively. Putative operons containing sbrA possessed many other components, including genes encoding c -type cytochromes, response regulators, and ferredoxins, which together implement Sb(V) reduction. This predicted ability was confirmed by incubating the enrichment culture with 13 C-labeled CH 4 and Sb(V) in serum bottles, where Sb(V) was reduced coincident with the production of 13 C-labeled CO 2 . Overall, these results increase our understanding of how Sb(V) can be bio-reduced in environments.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31501939</pmid><doi>10.1007/s00253-019-10111-x</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5177-8010</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2019-11, Vol.103 (21-22), p.9119-9129
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_2288005983
source ABI/INFORM Global; Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Analysis
Antimony
Antimony - metabolism
Arsenates
Bacteria - classification
Bacteria - enzymology
Bacteria - genetics
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biomedical and Life Sciences
Bioreactors
Biotechnology
Carbon dioxide
Catalysis
Catalytic subunits
Cytochromes
Dimethyl sulfoxide
Dimethyl sulfoxide reductase
Environmental Biotechnology
Enzymes
Genes
Genetic aspects
Genetic transcription
Genomes
Genomics
Identification and classification
Life Sciences
Methane
Microbial Genetics and Genomics
Microbiology
Microorganisms
Multigene Family
Operon
Operons
Oxidoreductases - genetics
Oxidoreductases - metabolism
Phylogeny
Reductases
Reduction
Regulators
title Multi-omics reveal various potential antimonate reductases from phylogenetically diverse microorganisms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A04%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-omics%20reveal%20various%20potential%20antimonate%20reductases%20from%20phylogenetically%20diverse%20microorganisms&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Shi,%20Ling-Dong&rft.date=2019-11-01&rft.volume=103&rft.issue=21-22&rft.spage=9119&rft.epage=9129&rft.pages=9119-9129&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-019-10111-x&rft_dat=%3Cgale_proqu%3EA605654834%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-f5cf5ad3c7424064c8b30f7282cb49eb0f945c041fbc5c6268217a82bb9193723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2287211182&rft_id=info:pmid/31501939&rft_galeid=A605654834&rfr_iscdi=true