Loading…

Why be serious about emetic Bacillus cereus: Cereulide production and industrial challenges

Cereulide, a potent toxin produced by Bacillus cereus, is a small, highly heat- and acid-resistant depsipeptide toxin, which confronts food industry with several challenges. Due to the ubiquitous presence of B. cereus in the environment, this opportunistic pathogen can enter food production and proc...

Full description

Saved in:
Bibliographic Details
Published in:Food microbiology 2020-02, Vol.85, p.103279-103279, Article 103279
Main Authors: Rouzeau-Szynalski, Katia, Stollewerk, Katharina, Messelhäusser, Ute, Ehling-Schulz, Monika
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cereulide, a potent toxin produced by Bacillus cereus, is a small, highly heat- and acid-resistant depsipeptide toxin, which confronts food industry with several challenges. Due to the ubiquitous presence of B. cereus in the environment, this opportunistic pathogen can enter food production and processing at almost any stage. Although the bacteria itself might be removed during food processing, the cereulide toxin will most likely not be destroyed or inactivated by these processes. Because of the high toxicity of cereulide and the high incidence rates often observed in connection with foodborne outbreaks, the understanding of the mechanisms of toxin production as well as accurate data on contamination sources and factors promoting toxin formation are urgently needed to prevent contamination and toxin production in food production processes. Over the last decade, considerable progress had been made on the understanding of cereulide toxin biosynthesis in emetic B. cereus, but an overview of current knowledge on this toxin with regards to food industry perspective is lacking. Thus, we aim in this work to summarize data available on extrinsic parameters acting on cereulide toxin synthesis in emetic B. cereus and to discuss the food industry specific challenges related to this toxin. Furthermore, we emphasize how identification of the cardinals in food production processes can lead to novel effective strategies for prevention of toxin formation in the food processing chain and could contribute to the improvement of existing HACCP studies. •Summary of current knowledge on regulation of cereulide toxin biosynthesis•Overview on knowledge about mechnisms of toxin action•First review adressing cereulide toxin from a food industry perspective
ISSN:0740-0020
1095-9998
DOI:10.1016/j.fm.2019.103279