Loading…
Imidazole-Linked Crystalline Two-Dimensional Polymer with Ultrahigh Proton-Conductivity
Proton-exchange membrane fuel cells are promising energy devices for a sustainable future due to green features, high power density, and mild operating conditions. A facile proton-conducting membrane plays a pivotal role to boost the efficiency of fuel cells, and hence focused research in this area...
Saved in:
Published in: | Journal of the American Chemical Society 2019-09, Vol.141 (38), p.14950-14954 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Proton-exchange membrane fuel cells are promising energy devices for a sustainable future due to green features, high power density, and mild operating conditions. A facile proton-conducting membrane plays a pivotal role to boost the efficiency of fuel cells, and hence focused research in this area is highly desirable. Major issues associated with the successful example of Nafion resulted in the search for alternate proton conducting materials. Even though proton carrier loaded crystalline porous organic frameworks have been used for proton-conduction, the weak host–guest interactions limited their practical use. Herein, we developed a crystalline 2D-polymer composed of benzimidazole units as the integral part, prepared by the condensation of aryl acid and diamine in polyphosphoric acid medium. The imidazole linked-2D-polymer exhibits ultrahigh proton conductivity (3.2 × 10–2 S cm–1) (at 95% relative humidity and 95 °C) in the pristine state, which is highest among the undoped porous organic frameworks so far reported. The present strategy of a crystalline proton-conducting 2D-polymer will lead to the development of new high performing crystalline solid proton conductor. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.9b06080 |