Loading…

Guidance for a causal comparative effectiveness analysis emulating a target trial based on big real world evidence: when to start statin treatment

The aim of this project is to describe a causal (counterfactual) approach for analyzing when to start statin treatment to prevent cardiovascular disease using real-world evidence. We use directed acyclic graphs to operationalize and visualize the causal research question considering selection bias,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of comparative effectiveness research 2019-09, Vol.8 (12), p.1013-1025
Main Authors: Kuehne, Felicitas, Jahn, Beate, Conrads-Frank, Annette, Bundo, Marvin, Arvandi, Marjan, Endel, Florian, Popper, Niki, Endel, Gottfried, Urach, Christoph, Gyimesi, Michael, Murray, Eleanor J, Danaei, Goodarz, Gaziano, Thomas A, Pandya, Ankur, Siebert, Uwe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c371t-a3a5cd2bec02204b673ec2b869e7f937574920600c6ea5824c2d3697668ab47b3
cites cdi_FETCH-LOGICAL-c371t-a3a5cd2bec02204b673ec2b869e7f937574920600c6ea5824c2d3697668ab47b3
container_end_page 1025
container_issue 12
container_start_page 1013
container_title Journal of comparative effectiveness research
container_volume 8
creator Kuehne, Felicitas
Jahn, Beate
Conrads-Frank, Annette
Bundo, Marvin
Arvandi, Marjan
Endel, Florian
Popper, Niki
Endel, Gottfried
Urach, Christoph
Gyimesi, Michael
Murray, Eleanor J
Danaei, Goodarz
Gaziano, Thomas A
Pandya, Ankur
Siebert, Uwe
description The aim of this project is to describe a causal (counterfactual) approach for analyzing when to start statin treatment to prevent cardiovascular disease using real-world evidence. We use directed acyclic graphs to operationalize and visualize the causal research question considering selection bias, potential time-independent and time-dependent confounding. We provide a study protocol following the ‘target trial’ approach and describe the data structure needed for the causal assessment. The study protocol can be applied to real-world data, in general. However, the structure and quality of the database play an essential role for the validity of the results, and database-specific potential for bias needs to be explicitly considered.
doi_str_mv 10.2217/cer-2018-0103
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2289574174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2289574174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-a3a5cd2bec02204b673ec2b869e7f937574920600c6ea5824c2d3697668ab47b3</originalsourceid><addsrcrecordid>eNp1kUtr3TAQhUVpaEKSZbdF0E03TvWwJbu7EtI0EOgmWQtZHt8q2NKtHgn5G_3FHXPTLArVQhqJ75xBcwh5z9mFEFx_dpAawXjfMM7kG3IiWCsaJbl8-1qz7pic5_zAcKm-HTrxjhxL3nExCHVCfl9XP9nggM4xUUudrdku1MV1b5Mt_hEozDO4rQqQM7XBLs_ZZwprXRAIO1QVm3ZQaEketaPNMNEY6Oh3NAG-PMW0TBQe_QTY6Qt9-gmBlkgz6sq2ow2KwZYVQjkjR7NdMpy_nKfk_tvV3eX35vbH9c3l19vGSc1LY6Xt3CRGcEzgX0elJTgx9moAPQ9Sd7odBFOMOQW260XrxCTVoJXq7djqUZ6STwfffYq_KuRiVp8dLIsNEGs2QvQDmnDdIvrxH_Qh1oSTQEp2TG7D5Eg1B8qlmHOC2eyTX216NpyZLS-DeZktL7PlhfyHF9c6rjC90n_TQWA4AHMtNUF2fpufOdxQ4Z0P8B_zP4zJpSM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350312921</pqid></control><display><type>article</type><title>Guidance for a causal comparative effectiveness analysis emulating a target trial based on big real world evidence: when to start statin treatment</title><source>PubMed (Medline)</source><creator>Kuehne, Felicitas ; Jahn, Beate ; Conrads-Frank, Annette ; Bundo, Marvin ; Arvandi, Marjan ; Endel, Florian ; Popper, Niki ; Endel, Gottfried ; Urach, Christoph ; Gyimesi, Michael ; Murray, Eleanor J ; Danaei, Goodarz ; Gaziano, Thomas A ; Pandya, Ankur ; Siebert, Uwe</creator><creatorcontrib>Kuehne, Felicitas ; Jahn, Beate ; Conrads-Frank, Annette ; Bundo, Marvin ; Arvandi, Marjan ; Endel, Florian ; Popper, Niki ; Endel, Gottfried ; Urach, Christoph ; Gyimesi, Michael ; Murray, Eleanor J ; Danaei, Goodarz ; Gaziano, Thomas A ; Pandya, Ankur ; Siebert, Uwe</creatorcontrib><description>The aim of this project is to describe a causal (counterfactual) approach for analyzing when to start statin treatment to prevent cardiovascular disease using real-world evidence. We use directed acyclic graphs to operationalize and visualize the causal research question considering selection bias, potential time-independent and time-dependent confounding. We provide a study protocol following the ‘target trial’ approach and describe the data structure needed for the causal assessment. The study protocol can be applied to real-world data, in general. However, the structure and quality of the database play an essential role for the validity of the results, and database-specific potential for bias needs to be explicitly considered.</description><identifier>ISSN: 2042-6305</identifier><identifier>EISSN: 2042-6313</identifier><identifier>DOI: 10.2217/cer-2018-0103</identifier><identifier>PMID: 31512926</identifier><language>eng</language><publisher>England: Future Medicine Ltd</publisher><subject>big data ; Cardiology ; Cardiovascular disease ; causal inference ; Cholesterol ; Clinical trials ; Data analysis ; Decision making ; Diabetes ; Disease prevention ; Heart ; inverse probability of censoring weighting (IPCW) ; Kidney diseases ; Mortality ; Observational studies ; observational study ; real-world evidence ; Researchers ; statin ; Statins ; Statistical methods ; study design ; target trial ; time-dependent confounding</subject><ispartof>Journal of comparative effectiveness research, 2019-09, Vol.8 (12), p.1013-1025</ispartof><rights>2019 Future Medicine Ltd</rights><rights>Copyright Future Medicine Ltd Sep 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-a3a5cd2bec02204b673ec2b869e7f937574920600c6ea5824c2d3697668ab47b3</citedby><cites>FETCH-LOGICAL-c371t-a3a5cd2bec02204b673ec2b869e7f937574920600c6ea5824c2d3697668ab47b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31512926$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuehne, Felicitas</creatorcontrib><creatorcontrib>Jahn, Beate</creatorcontrib><creatorcontrib>Conrads-Frank, Annette</creatorcontrib><creatorcontrib>Bundo, Marvin</creatorcontrib><creatorcontrib>Arvandi, Marjan</creatorcontrib><creatorcontrib>Endel, Florian</creatorcontrib><creatorcontrib>Popper, Niki</creatorcontrib><creatorcontrib>Endel, Gottfried</creatorcontrib><creatorcontrib>Urach, Christoph</creatorcontrib><creatorcontrib>Gyimesi, Michael</creatorcontrib><creatorcontrib>Murray, Eleanor J</creatorcontrib><creatorcontrib>Danaei, Goodarz</creatorcontrib><creatorcontrib>Gaziano, Thomas A</creatorcontrib><creatorcontrib>Pandya, Ankur</creatorcontrib><creatorcontrib>Siebert, Uwe</creatorcontrib><title>Guidance for a causal comparative effectiveness analysis emulating a target trial based on big real world evidence: when to start statin treatment</title><title>Journal of comparative effectiveness research</title><addtitle>J Comp Eff Res</addtitle><description>The aim of this project is to describe a causal (counterfactual) approach for analyzing when to start statin treatment to prevent cardiovascular disease using real-world evidence. We use directed acyclic graphs to operationalize and visualize the causal research question considering selection bias, potential time-independent and time-dependent confounding. We provide a study protocol following the ‘target trial’ approach and describe the data structure needed for the causal assessment. The study protocol can be applied to real-world data, in general. However, the structure and quality of the database play an essential role for the validity of the results, and database-specific potential for bias needs to be explicitly considered.</description><subject>big data</subject><subject>Cardiology</subject><subject>Cardiovascular disease</subject><subject>causal inference</subject><subject>Cholesterol</subject><subject>Clinical trials</subject><subject>Data analysis</subject><subject>Decision making</subject><subject>Diabetes</subject><subject>Disease prevention</subject><subject>Heart</subject><subject>inverse probability of censoring weighting (IPCW)</subject><subject>Kidney diseases</subject><subject>Mortality</subject><subject>Observational studies</subject><subject>observational study</subject><subject>real-world evidence</subject><subject>Researchers</subject><subject>statin</subject><subject>Statins</subject><subject>Statistical methods</subject><subject>study design</subject><subject>target trial</subject><subject>time-dependent confounding</subject><issn>2042-6305</issn><issn>2042-6313</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kUtr3TAQhUVpaEKSZbdF0E03TvWwJbu7EtI0EOgmWQtZHt8q2NKtHgn5G_3FHXPTLArVQhqJ75xBcwh5z9mFEFx_dpAawXjfMM7kG3IiWCsaJbl8-1qz7pic5_zAcKm-HTrxjhxL3nExCHVCfl9XP9nggM4xUUudrdku1MV1b5Mt_hEozDO4rQqQM7XBLs_ZZwprXRAIO1QVm3ZQaEketaPNMNEY6Oh3NAG-PMW0TBQe_QTY6Qt9-gmBlkgz6sq2ow2KwZYVQjkjR7NdMpy_nKfk_tvV3eX35vbH9c3l19vGSc1LY6Xt3CRGcEzgX0elJTgx9moAPQ9Sd7odBFOMOQW260XrxCTVoJXq7djqUZ6STwfffYq_KuRiVp8dLIsNEGs2QvQDmnDdIvrxH_Qh1oSTQEp2TG7D5Eg1B8qlmHOC2eyTX216NpyZLS-DeZktL7PlhfyHF9c6rjC90n_TQWA4AHMtNUF2fpufOdxQ4Z0P8B_zP4zJpSM</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Kuehne, Felicitas</creator><creator>Jahn, Beate</creator><creator>Conrads-Frank, Annette</creator><creator>Bundo, Marvin</creator><creator>Arvandi, Marjan</creator><creator>Endel, Florian</creator><creator>Popper, Niki</creator><creator>Endel, Gottfried</creator><creator>Urach, Christoph</creator><creator>Gyimesi, Michael</creator><creator>Murray, Eleanor J</creator><creator>Danaei, Goodarz</creator><creator>Gaziano, Thomas A</creator><creator>Pandya, Ankur</creator><creator>Siebert, Uwe</creator><general>Future Medicine Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20190901</creationdate><title>Guidance for a causal comparative effectiveness analysis emulating a target trial based on big real world evidence: when to start statin treatment</title><author>Kuehne, Felicitas ; Jahn, Beate ; Conrads-Frank, Annette ; Bundo, Marvin ; Arvandi, Marjan ; Endel, Florian ; Popper, Niki ; Endel, Gottfried ; Urach, Christoph ; Gyimesi, Michael ; Murray, Eleanor J ; Danaei, Goodarz ; Gaziano, Thomas A ; Pandya, Ankur ; Siebert, Uwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-a3a5cd2bec02204b673ec2b869e7f937574920600c6ea5824c2d3697668ab47b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>big data</topic><topic>Cardiology</topic><topic>Cardiovascular disease</topic><topic>causal inference</topic><topic>Cholesterol</topic><topic>Clinical trials</topic><topic>Data analysis</topic><topic>Decision making</topic><topic>Diabetes</topic><topic>Disease prevention</topic><topic>Heart</topic><topic>inverse probability of censoring weighting (IPCW)</topic><topic>Kidney diseases</topic><topic>Mortality</topic><topic>Observational studies</topic><topic>observational study</topic><topic>real-world evidence</topic><topic>Researchers</topic><topic>statin</topic><topic>Statins</topic><topic>Statistical methods</topic><topic>study design</topic><topic>target trial</topic><topic>time-dependent confounding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuehne, Felicitas</creatorcontrib><creatorcontrib>Jahn, Beate</creatorcontrib><creatorcontrib>Conrads-Frank, Annette</creatorcontrib><creatorcontrib>Bundo, Marvin</creatorcontrib><creatorcontrib>Arvandi, Marjan</creatorcontrib><creatorcontrib>Endel, Florian</creatorcontrib><creatorcontrib>Popper, Niki</creatorcontrib><creatorcontrib>Endel, Gottfried</creatorcontrib><creatorcontrib>Urach, Christoph</creatorcontrib><creatorcontrib>Gyimesi, Michael</creatorcontrib><creatorcontrib>Murray, Eleanor J</creatorcontrib><creatorcontrib>Danaei, Goodarz</creatorcontrib><creatorcontrib>Gaziano, Thomas A</creatorcontrib><creatorcontrib>Pandya, Ankur</creatorcontrib><creatorcontrib>Siebert, Uwe</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (ProQuest Medical &amp; Health Databases)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of comparative effectiveness research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuehne, Felicitas</au><au>Jahn, Beate</au><au>Conrads-Frank, Annette</au><au>Bundo, Marvin</au><au>Arvandi, Marjan</au><au>Endel, Florian</au><au>Popper, Niki</au><au>Endel, Gottfried</au><au>Urach, Christoph</au><au>Gyimesi, Michael</au><au>Murray, Eleanor J</au><au>Danaei, Goodarz</au><au>Gaziano, Thomas A</au><au>Pandya, Ankur</au><au>Siebert, Uwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guidance for a causal comparative effectiveness analysis emulating a target trial based on big real world evidence: when to start statin treatment</atitle><jtitle>Journal of comparative effectiveness research</jtitle><addtitle>J Comp Eff Res</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>8</volume><issue>12</issue><spage>1013</spage><epage>1025</epage><pages>1013-1025</pages><issn>2042-6305</issn><eissn>2042-6313</eissn><abstract>The aim of this project is to describe a causal (counterfactual) approach for analyzing when to start statin treatment to prevent cardiovascular disease using real-world evidence. We use directed acyclic graphs to operationalize and visualize the causal research question considering selection bias, potential time-independent and time-dependent confounding. We provide a study protocol following the ‘target trial’ approach and describe the data structure needed for the causal assessment. The study protocol can be applied to real-world data, in general. However, the structure and quality of the database play an essential role for the validity of the results, and database-specific potential for bias needs to be explicitly considered.</abstract><cop>England</cop><pub>Future Medicine Ltd</pub><pmid>31512926</pmid><doi>10.2217/cer-2018-0103</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2042-6305
ispartof Journal of comparative effectiveness research, 2019-09, Vol.8 (12), p.1013-1025
issn 2042-6305
2042-6313
language eng
recordid cdi_proquest_miscellaneous_2289574174
source PubMed (Medline)
subjects big data
Cardiology
Cardiovascular disease
causal inference
Cholesterol
Clinical trials
Data analysis
Decision making
Diabetes
Disease prevention
Heart
inverse probability of censoring weighting (IPCW)
Kidney diseases
Mortality
Observational studies
observational study
real-world evidence
Researchers
statin
Statins
Statistical methods
study design
target trial
time-dependent confounding
title Guidance for a causal comparative effectiveness analysis emulating a target trial based on big real world evidence: when to start statin treatment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A59%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guidance%20for%20a%20causal%20comparative%20effectiveness%20analysis%20emulating%20a%20target%20trial%20based%20on%20big%20real%20world%20evidence:%20when%20to%20start%20statin%20treatment&rft.jtitle=Journal%20of%20comparative%20effectiveness%20research&rft.au=Kuehne,%20Felicitas&rft.date=2019-09-01&rft.volume=8&rft.issue=12&rft.spage=1013&rft.epage=1025&rft.pages=1013-1025&rft.issn=2042-6305&rft.eissn=2042-6313&rft_id=info:doi/10.2217/cer-2018-0103&rft_dat=%3Cproquest_cross%3E2289574174%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-a3a5cd2bec02204b673ec2b869e7f937574920600c6ea5824c2d3697668ab47b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2350312921&rft_id=info:pmid/31512926&rfr_iscdi=true