Loading…
Guidance for a causal comparative effectiveness analysis emulating a target trial based on big real world evidence: when to start statin treatment
The aim of this project is to describe a causal (counterfactual) approach for analyzing when to start statin treatment to prevent cardiovascular disease using real-world evidence. We use directed acyclic graphs to operationalize and visualize the causal research question considering selection bias,...
Saved in:
Published in: | Journal of comparative effectiveness research 2019-09, Vol.8 (12), p.1013-1025 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c371t-a3a5cd2bec02204b673ec2b869e7f937574920600c6ea5824c2d3697668ab47b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c371t-a3a5cd2bec02204b673ec2b869e7f937574920600c6ea5824c2d3697668ab47b3 |
container_end_page | 1025 |
container_issue | 12 |
container_start_page | 1013 |
container_title | Journal of comparative effectiveness research |
container_volume | 8 |
creator | Kuehne, Felicitas Jahn, Beate Conrads-Frank, Annette Bundo, Marvin Arvandi, Marjan Endel, Florian Popper, Niki Endel, Gottfried Urach, Christoph Gyimesi, Michael Murray, Eleanor J Danaei, Goodarz Gaziano, Thomas A Pandya, Ankur Siebert, Uwe |
description | The aim of this project is to describe a causal (counterfactual) approach for analyzing when to start statin treatment to prevent cardiovascular disease using real-world evidence.
We use directed acyclic graphs to operationalize and visualize the causal research question considering selection bias, potential time-independent and time-dependent confounding. We provide a study protocol following the ‘target trial’ approach and describe the data structure needed for the causal assessment.
The study protocol can be applied to real-world data, in general. However, the structure and quality of the database play an essential role for the validity of the results, and database-specific potential for bias needs to be explicitly considered. |
doi_str_mv | 10.2217/cer-2018-0103 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2289574174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2289574174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-a3a5cd2bec02204b673ec2b869e7f937574920600c6ea5824c2d3697668ab47b3</originalsourceid><addsrcrecordid>eNp1kUtr3TAQhUVpaEKSZbdF0E03TvWwJbu7EtI0EOgmWQtZHt8q2NKtHgn5G_3FHXPTLArVQhqJ75xBcwh5z9mFEFx_dpAawXjfMM7kG3IiWCsaJbl8-1qz7pic5_zAcKm-HTrxjhxL3nExCHVCfl9XP9nggM4xUUudrdku1MV1b5Mt_hEozDO4rQqQM7XBLs_ZZwprXRAIO1QVm3ZQaEketaPNMNEY6Oh3NAG-PMW0TBQe_QTY6Qt9-gmBlkgz6sq2ow2KwZYVQjkjR7NdMpy_nKfk_tvV3eX35vbH9c3l19vGSc1LY6Xt3CRGcEzgX0elJTgx9moAPQ9Sd7odBFOMOQW260XrxCTVoJXq7djqUZ6STwfffYq_KuRiVp8dLIsNEGs2QvQDmnDdIvrxH_Qh1oSTQEp2TG7D5Eg1B8qlmHOC2eyTX216NpyZLS-DeZktL7PlhfyHF9c6rjC90n_TQWA4AHMtNUF2fpufOdxQ4Z0P8B_zP4zJpSM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350312921</pqid></control><display><type>article</type><title>Guidance for a causal comparative effectiveness analysis emulating a target trial based on big real world evidence: when to start statin treatment</title><source>PubMed (Medline)</source><creator>Kuehne, Felicitas ; Jahn, Beate ; Conrads-Frank, Annette ; Bundo, Marvin ; Arvandi, Marjan ; Endel, Florian ; Popper, Niki ; Endel, Gottfried ; Urach, Christoph ; Gyimesi, Michael ; Murray, Eleanor J ; Danaei, Goodarz ; Gaziano, Thomas A ; Pandya, Ankur ; Siebert, Uwe</creator><creatorcontrib>Kuehne, Felicitas ; Jahn, Beate ; Conrads-Frank, Annette ; Bundo, Marvin ; Arvandi, Marjan ; Endel, Florian ; Popper, Niki ; Endel, Gottfried ; Urach, Christoph ; Gyimesi, Michael ; Murray, Eleanor J ; Danaei, Goodarz ; Gaziano, Thomas A ; Pandya, Ankur ; Siebert, Uwe</creatorcontrib><description>The aim of this project is to describe a causal (counterfactual) approach for analyzing when to start statin treatment to prevent cardiovascular disease using real-world evidence.
We use directed acyclic graphs to operationalize and visualize the causal research question considering selection bias, potential time-independent and time-dependent confounding. We provide a study protocol following the ‘target trial’ approach and describe the data structure needed for the causal assessment.
The study protocol can be applied to real-world data, in general. However, the structure and quality of the database play an essential role for the validity of the results, and database-specific potential for bias needs to be explicitly considered.</description><identifier>ISSN: 2042-6305</identifier><identifier>EISSN: 2042-6313</identifier><identifier>DOI: 10.2217/cer-2018-0103</identifier><identifier>PMID: 31512926</identifier><language>eng</language><publisher>England: Future Medicine Ltd</publisher><subject>big data ; Cardiology ; Cardiovascular disease ; causal inference ; Cholesterol ; Clinical trials ; Data analysis ; Decision making ; Diabetes ; Disease prevention ; Heart ; inverse probability of censoring weighting (IPCW) ; Kidney diseases ; Mortality ; Observational studies ; observational study ; real-world evidence ; Researchers ; statin ; Statins ; Statistical methods ; study design ; target trial ; time-dependent confounding</subject><ispartof>Journal of comparative effectiveness research, 2019-09, Vol.8 (12), p.1013-1025</ispartof><rights>2019 Future Medicine Ltd</rights><rights>Copyright Future Medicine Ltd Sep 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-a3a5cd2bec02204b673ec2b869e7f937574920600c6ea5824c2d3697668ab47b3</citedby><cites>FETCH-LOGICAL-c371t-a3a5cd2bec02204b673ec2b869e7f937574920600c6ea5824c2d3697668ab47b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31512926$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuehne, Felicitas</creatorcontrib><creatorcontrib>Jahn, Beate</creatorcontrib><creatorcontrib>Conrads-Frank, Annette</creatorcontrib><creatorcontrib>Bundo, Marvin</creatorcontrib><creatorcontrib>Arvandi, Marjan</creatorcontrib><creatorcontrib>Endel, Florian</creatorcontrib><creatorcontrib>Popper, Niki</creatorcontrib><creatorcontrib>Endel, Gottfried</creatorcontrib><creatorcontrib>Urach, Christoph</creatorcontrib><creatorcontrib>Gyimesi, Michael</creatorcontrib><creatorcontrib>Murray, Eleanor J</creatorcontrib><creatorcontrib>Danaei, Goodarz</creatorcontrib><creatorcontrib>Gaziano, Thomas A</creatorcontrib><creatorcontrib>Pandya, Ankur</creatorcontrib><creatorcontrib>Siebert, Uwe</creatorcontrib><title>Guidance for a causal comparative effectiveness analysis emulating a target trial based on big real world evidence: when to start statin treatment</title><title>Journal of comparative effectiveness research</title><addtitle>J Comp Eff Res</addtitle><description>The aim of this project is to describe a causal (counterfactual) approach for analyzing when to start statin treatment to prevent cardiovascular disease using real-world evidence.
We use directed acyclic graphs to operationalize and visualize the causal research question considering selection bias, potential time-independent and time-dependent confounding. We provide a study protocol following the ‘target trial’ approach and describe the data structure needed for the causal assessment.
The study protocol can be applied to real-world data, in general. However, the structure and quality of the database play an essential role for the validity of the results, and database-specific potential for bias needs to be explicitly considered.</description><subject>big data</subject><subject>Cardiology</subject><subject>Cardiovascular disease</subject><subject>causal inference</subject><subject>Cholesterol</subject><subject>Clinical trials</subject><subject>Data analysis</subject><subject>Decision making</subject><subject>Diabetes</subject><subject>Disease prevention</subject><subject>Heart</subject><subject>inverse probability of censoring weighting (IPCW)</subject><subject>Kidney diseases</subject><subject>Mortality</subject><subject>Observational studies</subject><subject>observational study</subject><subject>real-world evidence</subject><subject>Researchers</subject><subject>statin</subject><subject>Statins</subject><subject>Statistical methods</subject><subject>study design</subject><subject>target trial</subject><subject>time-dependent confounding</subject><issn>2042-6305</issn><issn>2042-6313</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kUtr3TAQhUVpaEKSZbdF0E03TvWwJbu7EtI0EOgmWQtZHt8q2NKtHgn5G_3FHXPTLArVQhqJ75xBcwh5z9mFEFx_dpAawXjfMM7kG3IiWCsaJbl8-1qz7pic5_zAcKm-HTrxjhxL3nExCHVCfl9XP9nggM4xUUudrdku1MV1b5Mt_hEozDO4rQqQM7XBLs_ZZwprXRAIO1QVm3ZQaEketaPNMNEY6Oh3NAG-PMW0TBQe_QTY6Qt9-gmBlkgz6sq2ow2KwZYVQjkjR7NdMpy_nKfk_tvV3eX35vbH9c3l19vGSc1LY6Xt3CRGcEzgX0elJTgx9moAPQ9Sd7odBFOMOQW260XrxCTVoJXq7djqUZ6STwfffYq_KuRiVp8dLIsNEGs2QvQDmnDdIvrxH_Qh1oSTQEp2TG7D5Eg1B8qlmHOC2eyTX216NpyZLS-DeZktL7PlhfyHF9c6rjC90n_TQWA4AHMtNUF2fpufOdxQ4Z0P8B_zP4zJpSM</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Kuehne, Felicitas</creator><creator>Jahn, Beate</creator><creator>Conrads-Frank, Annette</creator><creator>Bundo, Marvin</creator><creator>Arvandi, Marjan</creator><creator>Endel, Florian</creator><creator>Popper, Niki</creator><creator>Endel, Gottfried</creator><creator>Urach, Christoph</creator><creator>Gyimesi, Michael</creator><creator>Murray, Eleanor J</creator><creator>Danaei, Goodarz</creator><creator>Gaziano, Thomas A</creator><creator>Pandya, Ankur</creator><creator>Siebert, Uwe</creator><general>Future Medicine Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20190901</creationdate><title>Guidance for a causal comparative effectiveness analysis emulating a target trial based on big real world evidence: when to start statin treatment</title><author>Kuehne, Felicitas ; Jahn, Beate ; Conrads-Frank, Annette ; Bundo, Marvin ; Arvandi, Marjan ; Endel, Florian ; Popper, Niki ; Endel, Gottfried ; Urach, Christoph ; Gyimesi, Michael ; Murray, Eleanor J ; Danaei, Goodarz ; Gaziano, Thomas A ; Pandya, Ankur ; Siebert, Uwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-a3a5cd2bec02204b673ec2b869e7f937574920600c6ea5824c2d3697668ab47b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>big data</topic><topic>Cardiology</topic><topic>Cardiovascular disease</topic><topic>causal inference</topic><topic>Cholesterol</topic><topic>Clinical trials</topic><topic>Data analysis</topic><topic>Decision making</topic><topic>Diabetes</topic><topic>Disease prevention</topic><topic>Heart</topic><topic>inverse probability of censoring weighting (IPCW)</topic><topic>Kidney diseases</topic><topic>Mortality</topic><topic>Observational studies</topic><topic>observational study</topic><topic>real-world evidence</topic><topic>Researchers</topic><topic>statin</topic><topic>Statins</topic><topic>Statistical methods</topic><topic>study design</topic><topic>target trial</topic><topic>time-dependent confounding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuehne, Felicitas</creatorcontrib><creatorcontrib>Jahn, Beate</creatorcontrib><creatorcontrib>Conrads-Frank, Annette</creatorcontrib><creatorcontrib>Bundo, Marvin</creatorcontrib><creatorcontrib>Arvandi, Marjan</creatorcontrib><creatorcontrib>Endel, Florian</creatorcontrib><creatorcontrib>Popper, Niki</creatorcontrib><creatorcontrib>Endel, Gottfried</creatorcontrib><creatorcontrib>Urach, Christoph</creatorcontrib><creatorcontrib>Gyimesi, Michael</creatorcontrib><creatorcontrib>Murray, Eleanor J</creatorcontrib><creatorcontrib>Danaei, Goodarz</creatorcontrib><creatorcontrib>Gaziano, Thomas A</creatorcontrib><creatorcontrib>Pandya, Ankur</creatorcontrib><creatorcontrib>Siebert, Uwe</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (ProQuest Medical & Health Databases)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of comparative effectiveness research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuehne, Felicitas</au><au>Jahn, Beate</au><au>Conrads-Frank, Annette</au><au>Bundo, Marvin</au><au>Arvandi, Marjan</au><au>Endel, Florian</au><au>Popper, Niki</au><au>Endel, Gottfried</au><au>Urach, Christoph</au><au>Gyimesi, Michael</au><au>Murray, Eleanor J</au><au>Danaei, Goodarz</au><au>Gaziano, Thomas A</au><au>Pandya, Ankur</au><au>Siebert, Uwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guidance for a causal comparative effectiveness analysis emulating a target trial based on big real world evidence: when to start statin treatment</atitle><jtitle>Journal of comparative effectiveness research</jtitle><addtitle>J Comp Eff Res</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>8</volume><issue>12</issue><spage>1013</spage><epage>1025</epage><pages>1013-1025</pages><issn>2042-6305</issn><eissn>2042-6313</eissn><abstract>The aim of this project is to describe a causal (counterfactual) approach for analyzing when to start statin treatment to prevent cardiovascular disease using real-world evidence.
We use directed acyclic graphs to operationalize and visualize the causal research question considering selection bias, potential time-independent and time-dependent confounding. We provide a study protocol following the ‘target trial’ approach and describe the data structure needed for the causal assessment.
The study protocol can be applied to real-world data, in general. However, the structure and quality of the database play an essential role for the validity of the results, and database-specific potential for bias needs to be explicitly considered.</abstract><cop>England</cop><pub>Future Medicine Ltd</pub><pmid>31512926</pmid><doi>10.2217/cer-2018-0103</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2042-6305 |
ispartof | Journal of comparative effectiveness research, 2019-09, Vol.8 (12), p.1013-1025 |
issn | 2042-6305 2042-6313 |
language | eng |
recordid | cdi_proquest_miscellaneous_2289574174 |
source | PubMed (Medline) |
subjects | big data Cardiology Cardiovascular disease causal inference Cholesterol Clinical trials Data analysis Decision making Diabetes Disease prevention Heart inverse probability of censoring weighting (IPCW) Kidney diseases Mortality Observational studies observational study real-world evidence Researchers statin Statins Statistical methods study design target trial time-dependent confounding |
title | Guidance for a causal comparative effectiveness analysis emulating a target trial based on big real world evidence: when to start statin treatment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A59%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guidance%20for%20a%20causal%20comparative%20effectiveness%20analysis%20emulating%20a%20target%20trial%20based%20on%20big%20real%20world%20evidence:%20when%20to%20start%20statin%20treatment&rft.jtitle=Journal%20of%20comparative%20effectiveness%20research&rft.au=Kuehne,%20Felicitas&rft.date=2019-09-01&rft.volume=8&rft.issue=12&rft.spage=1013&rft.epage=1025&rft.pages=1013-1025&rft.issn=2042-6305&rft.eissn=2042-6313&rft_id=info:doi/10.2217/cer-2018-0103&rft_dat=%3Cproquest_cross%3E2289574174%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-a3a5cd2bec02204b673ec2b869e7f937574920600c6ea5824c2d3697668ab47b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2350312921&rft_id=info:pmid/31512926&rfr_iscdi=true |