Loading…
Electroassembly of Chitin Nanoparticles to Construct Freestanding Hydrogels and High Porous Aerogels for Wound Healing
The construction of polymeric nanocomponents into a hierarchical structure poses great importance for subsequent biomedical applications. Herein, we report for the first time the electroassembly of chitin nanoparticles (14 nm ± 3 nm from transmission electron microscopy) to construct thick and frees...
Saved in:
Published in: | ACS applied materials & interfaces 2019-09, Vol.11 (38), p.34766-34776 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a330t-f9c22cc41c678c117a111a038e08dc7989e5daf7663543467f36b19f36944dc13 |
---|---|
cites | cdi_FETCH-LOGICAL-a330t-f9c22cc41c678c117a111a038e08dc7989e5daf7663543467f36b19f36944dc13 |
container_end_page | 34776 |
container_issue | 38 |
container_start_page | 34766 |
container_title | ACS applied materials & interfaces |
container_volume | 11 |
creator | Guo, Xiaojia Xu, Duoduo Zhao, Yanan Gao, Huimin Shi, Xiaowen Cai, Jie Deng, Hongbing Chen, Yun Du, Yumin |
description | The construction of polymeric nanocomponents into a hierarchical structure poses great importance for subsequent biomedical applications. Herein, we report for the first time the electroassembly of chitin nanoparticles (14 nm ± 3 nm from transmission electron microscopy) to construct thick and freestanding hydrogels, which can be further dried to obtain high porous and tough aerogels for wound healing. The electroassembly is a simple, straightforward, and controllable process, which crucially depends on the pH of the chitin nanoparticle suspension and the degree of deacetylation of chitin. Interestingly, the electroassembly of chitin nanoparticles is completely reversible, suggesting the physical assembly feature of the freestanding hydrogel. By using supercritical CO2 drying and freeze-drying, chitin aerogels and cryogels can be facilely obtained. Because of the intriguing features (i.e., large surface area, interconnected porous structure, and enhanced hydrophilicity), chitin aerogels demonstrate adorable performance to accelerate the healing of wounds. |
doi_str_mv | 10.1021/acsami.9b13063 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2290871282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2290871282</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-f9c22cc41c678c117a111a038e08dc7989e5daf7663543467f36b19f36944dc13</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EolBYGZFHhJTir3x4rKKWIlXAAGK0HMdpXSVxsROk_ve4SujGcj75fu_p7gFwh9EMI4KfpPKyMTNeYIoSegauMGcsykhMzk89YxNw7f0OBYKg-BJMKGaExyy9Aj-LWqvOWem9bor6AG0F863pTAtfZWv30nVG1drDzsLctr5zverg0mntO9mWpt3A1aF0dqNrD8MHXJnNFr5bZ3sP53ocVNbBL9sfx1rWQXQDLipZe307vlPwuVx85Kto_fb8ks_XkaQUdVHFFSFKMaySNFMYpxJjLBHNNMpKlfKM67iUVZokNGaUJWlFkwLzUMPlpcJ0Ch4G372z333YWTTGK13XstVhQ0EIR1mKSUYCOhtQ5az3Tldi70wj3UFgJI5ZiyFrMWYdBPejd180ujzhf-EG4HEAglDsbO_acOp_br9EfIpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290871282</pqid></control><display><type>article</type><title>Electroassembly of Chitin Nanoparticles to Construct Freestanding Hydrogels and High Porous Aerogels for Wound Healing</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Guo, Xiaojia ; Xu, Duoduo ; Zhao, Yanan ; Gao, Huimin ; Shi, Xiaowen ; Cai, Jie ; Deng, Hongbing ; Chen, Yun ; Du, Yumin</creator><creatorcontrib>Guo, Xiaojia ; Xu, Duoduo ; Zhao, Yanan ; Gao, Huimin ; Shi, Xiaowen ; Cai, Jie ; Deng, Hongbing ; Chen, Yun ; Du, Yumin</creatorcontrib><description>The construction of polymeric nanocomponents into a hierarchical structure poses great importance for subsequent biomedical applications. Herein, we report for the first time the electroassembly of chitin nanoparticles (14 nm ± 3 nm from transmission electron microscopy) to construct thick and freestanding hydrogels, which can be further dried to obtain high porous and tough aerogels for wound healing. The electroassembly is a simple, straightforward, and controllable process, which crucially depends on the pH of the chitin nanoparticle suspension and the degree of deacetylation of chitin. Interestingly, the electroassembly of chitin nanoparticles is completely reversible, suggesting the physical assembly feature of the freestanding hydrogel. By using supercritical CO2 drying and freeze-drying, chitin aerogels and cryogels can be facilely obtained. Because of the intriguing features (i.e., large surface area, interconnected porous structure, and enhanced hydrophilicity), chitin aerogels demonstrate adorable performance to accelerate the healing of wounds.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b13063</identifier><identifier>PMID: 31429547</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Cell Line ; Chitin - chemistry ; Chitin - pharmacology ; Electrochemical Techniques ; Hydrogels - chemical synthesis ; Hydrogels - chemistry ; Hydrogels - pharmacology ; Mice ; Nanoparticles - chemistry ; Nanoparticles - therapeutic use ; Rats ; Rats, Sprague-Dawley ; Wound Healing - drug effects ; Wounds and Injuries - drug therapy ; Wounds and Injuries - metabolism ; Wounds and Injuries - pathology</subject><ispartof>ACS applied materials & interfaces, 2019-09, Vol.11 (38), p.34766-34776</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-f9c22cc41c678c117a111a038e08dc7989e5daf7663543467f36b19f36944dc13</citedby><cites>FETCH-LOGICAL-a330t-f9c22cc41c678c117a111a038e08dc7989e5daf7663543467f36b19f36944dc13</cites><orcidid>0000-0001-8294-2920 ; 0000-0002-9784-6138 ; 0000-0002-0660-4740 ; 0000-0002-5984-7455</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31429547$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Xiaojia</creatorcontrib><creatorcontrib>Xu, Duoduo</creatorcontrib><creatorcontrib>Zhao, Yanan</creatorcontrib><creatorcontrib>Gao, Huimin</creatorcontrib><creatorcontrib>Shi, Xiaowen</creatorcontrib><creatorcontrib>Cai, Jie</creatorcontrib><creatorcontrib>Deng, Hongbing</creatorcontrib><creatorcontrib>Chen, Yun</creatorcontrib><creatorcontrib>Du, Yumin</creatorcontrib><title>Electroassembly of Chitin Nanoparticles to Construct Freestanding Hydrogels and High Porous Aerogels for Wound Healing</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The construction of polymeric nanocomponents into a hierarchical structure poses great importance for subsequent biomedical applications. Herein, we report for the first time the electroassembly of chitin nanoparticles (14 nm ± 3 nm from transmission electron microscopy) to construct thick and freestanding hydrogels, which can be further dried to obtain high porous and tough aerogels for wound healing. The electroassembly is a simple, straightforward, and controllable process, which crucially depends on the pH of the chitin nanoparticle suspension and the degree of deacetylation of chitin. Interestingly, the electroassembly of chitin nanoparticles is completely reversible, suggesting the physical assembly feature of the freestanding hydrogel. By using supercritical CO2 drying and freeze-drying, chitin aerogels and cryogels can be facilely obtained. Because of the intriguing features (i.e., large surface area, interconnected porous structure, and enhanced hydrophilicity), chitin aerogels demonstrate adorable performance to accelerate the healing of wounds.</description><subject>Animals</subject><subject>Cell Line</subject><subject>Chitin - chemistry</subject><subject>Chitin - pharmacology</subject><subject>Electrochemical Techniques</subject><subject>Hydrogels - chemical synthesis</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogels - pharmacology</subject><subject>Mice</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - therapeutic use</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Wound Healing - drug effects</subject><subject>Wounds and Injuries - drug therapy</subject><subject>Wounds and Injuries - metabolism</subject><subject>Wounds and Injuries - pathology</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EolBYGZFHhJTir3x4rKKWIlXAAGK0HMdpXSVxsROk_ve4SujGcj75fu_p7gFwh9EMI4KfpPKyMTNeYIoSegauMGcsykhMzk89YxNw7f0OBYKg-BJMKGaExyy9Aj-LWqvOWem9bor6AG0F863pTAtfZWv30nVG1drDzsLctr5zverg0mntO9mWpt3A1aF0dqNrD8MHXJnNFr5bZ3sP53ocVNbBL9sfx1rWQXQDLipZe307vlPwuVx85Kto_fb8ks_XkaQUdVHFFSFKMaySNFMYpxJjLBHNNMpKlfKM67iUVZokNGaUJWlFkwLzUMPlpcJ0Ch4G372z333YWTTGK13XstVhQ0EIR1mKSUYCOhtQ5az3Tldi70wj3UFgJI5ZiyFrMWYdBPejd180ujzhf-EG4HEAglDsbO_acOp_br9EfIpA</recordid><startdate>20190925</startdate><enddate>20190925</enddate><creator>Guo, Xiaojia</creator><creator>Xu, Duoduo</creator><creator>Zhao, Yanan</creator><creator>Gao, Huimin</creator><creator>Shi, Xiaowen</creator><creator>Cai, Jie</creator><creator>Deng, Hongbing</creator><creator>Chen, Yun</creator><creator>Du, Yumin</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8294-2920</orcidid><orcidid>https://orcid.org/0000-0002-9784-6138</orcidid><orcidid>https://orcid.org/0000-0002-0660-4740</orcidid><orcidid>https://orcid.org/0000-0002-5984-7455</orcidid></search><sort><creationdate>20190925</creationdate><title>Electroassembly of Chitin Nanoparticles to Construct Freestanding Hydrogels and High Porous Aerogels for Wound Healing</title><author>Guo, Xiaojia ; Xu, Duoduo ; Zhao, Yanan ; Gao, Huimin ; Shi, Xiaowen ; Cai, Jie ; Deng, Hongbing ; Chen, Yun ; Du, Yumin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-f9c22cc41c678c117a111a038e08dc7989e5daf7663543467f36b19f36944dc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Cell Line</topic><topic>Chitin - chemistry</topic><topic>Chitin - pharmacology</topic><topic>Electrochemical Techniques</topic><topic>Hydrogels - chemical synthesis</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogels - pharmacology</topic><topic>Mice</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - therapeutic use</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Wound Healing - drug effects</topic><topic>Wounds and Injuries - drug therapy</topic><topic>Wounds and Injuries - metabolism</topic><topic>Wounds and Injuries - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Xiaojia</creatorcontrib><creatorcontrib>Xu, Duoduo</creatorcontrib><creatorcontrib>Zhao, Yanan</creatorcontrib><creatorcontrib>Gao, Huimin</creatorcontrib><creatorcontrib>Shi, Xiaowen</creatorcontrib><creatorcontrib>Cai, Jie</creatorcontrib><creatorcontrib>Deng, Hongbing</creatorcontrib><creatorcontrib>Chen, Yun</creatorcontrib><creatorcontrib>Du, Yumin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Xiaojia</au><au>Xu, Duoduo</au><au>Zhao, Yanan</au><au>Gao, Huimin</au><au>Shi, Xiaowen</au><au>Cai, Jie</au><au>Deng, Hongbing</au><au>Chen, Yun</au><au>Du, Yumin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electroassembly of Chitin Nanoparticles to Construct Freestanding Hydrogels and High Porous Aerogels for Wound Healing</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-09-25</date><risdate>2019</risdate><volume>11</volume><issue>38</issue><spage>34766</spage><epage>34776</epage><pages>34766-34776</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The construction of polymeric nanocomponents into a hierarchical structure poses great importance for subsequent biomedical applications. Herein, we report for the first time the electroassembly of chitin nanoparticles (14 nm ± 3 nm from transmission electron microscopy) to construct thick and freestanding hydrogels, which can be further dried to obtain high porous and tough aerogels for wound healing. The electroassembly is a simple, straightforward, and controllable process, which crucially depends on the pH of the chitin nanoparticle suspension and the degree of deacetylation of chitin. Interestingly, the electroassembly of chitin nanoparticles is completely reversible, suggesting the physical assembly feature of the freestanding hydrogel. By using supercritical CO2 drying and freeze-drying, chitin aerogels and cryogels can be facilely obtained. Because of the intriguing features (i.e., large surface area, interconnected porous structure, and enhanced hydrophilicity), chitin aerogels demonstrate adorable performance to accelerate the healing of wounds.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31429547</pmid><doi>10.1021/acsami.9b13063</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8294-2920</orcidid><orcidid>https://orcid.org/0000-0002-9784-6138</orcidid><orcidid>https://orcid.org/0000-0002-0660-4740</orcidid><orcidid>https://orcid.org/0000-0002-5984-7455</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2019-09, Vol.11 (38), p.34766-34776 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2290871282 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Animals Cell Line Chitin - chemistry Chitin - pharmacology Electrochemical Techniques Hydrogels - chemical synthesis Hydrogels - chemistry Hydrogels - pharmacology Mice Nanoparticles - chemistry Nanoparticles - therapeutic use Rats Rats, Sprague-Dawley Wound Healing - drug effects Wounds and Injuries - drug therapy Wounds and Injuries - metabolism Wounds and Injuries - pathology |
title | Electroassembly of Chitin Nanoparticles to Construct Freestanding Hydrogels and High Porous Aerogels for Wound Healing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electroassembly%20of%20Chitin%20Nanoparticles%20to%20Construct%20Freestanding%20Hydrogels%20and%20High%20Porous%20Aerogels%20for%20Wound%20Healing&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Guo,%20Xiaojia&rft.date=2019-09-25&rft.volume=11&rft.issue=38&rft.spage=34766&rft.epage=34776&rft.pages=34766-34776&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b13063&rft_dat=%3Cproquest_cross%3E2290871282%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a330t-f9c22cc41c678c117a111a038e08dc7989e5daf7663543467f36b19f36944dc13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2290871282&rft_id=info:pmid/31429547&rfr_iscdi=true |