Loading…

Electroassembly of Chitin Nanoparticles to Construct Freestanding Hydrogels and High Porous Aerogels for Wound Healing

The construction of polymeric nanocomponents into a hierarchical structure poses great importance for subsequent biomedical applications. Herein, we report for the first time the electroassembly of chitin nanoparticles (14 nm ± 3 nm from transmission electron microscopy) to construct thick and frees...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2019-09, Vol.11 (38), p.34766-34776
Main Authors: Guo, Xiaojia, Xu, Duoduo, Zhao, Yanan, Gao, Huimin, Shi, Xiaowen, Cai, Jie, Deng, Hongbing, Chen, Yun, Du, Yumin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a330t-f9c22cc41c678c117a111a038e08dc7989e5daf7663543467f36b19f36944dc13
cites cdi_FETCH-LOGICAL-a330t-f9c22cc41c678c117a111a038e08dc7989e5daf7663543467f36b19f36944dc13
container_end_page 34776
container_issue 38
container_start_page 34766
container_title ACS applied materials & interfaces
container_volume 11
creator Guo, Xiaojia
Xu, Duoduo
Zhao, Yanan
Gao, Huimin
Shi, Xiaowen
Cai, Jie
Deng, Hongbing
Chen, Yun
Du, Yumin
description The construction of polymeric nanocomponents into a hierarchical structure poses great importance for subsequent biomedical applications. Herein, we report for the first time the electroassembly of chitin nanoparticles (14 nm ± 3 nm from transmission electron microscopy) to construct thick and freestanding hydrogels, which can be further dried to obtain high porous and tough aerogels for wound healing. The electroassembly is a simple, straightforward, and controllable process, which crucially depends on the pH of the chitin nanoparticle suspension and the degree of deacetylation of chitin. Interestingly, the electroassembly of chitin nanoparticles is completely reversible, suggesting the physical assembly feature of the freestanding hydrogel. By using supercritical CO2 drying and freeze-drying, chitin aerogels and cryogels can be facilely obtained. Because of the intriguing features (i.e., large surface area, interconnected porous structure, and enhanced hydrophilicity), chitin aerogels demonstrate adorable performance to accelerate the healing of wounds.
doi_str_mv 10.1021/acsami.9b13063
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2290871282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2290871282</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-f9c22cc41c678c117a111a038e08dc7989e5daf7663543467f36b19f36944dc13</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EolBYGZFHhJTir3x4rKKWIlXAAGK0HMdpXSVxsROk_ve4SujGcj75fu_p7gFwh9EMI4KfpPKyMTNeYIoSegauMGcsykhMzk89YxNw7f0OBYKg-BJMKGaExyy9Aj-LWqvOWem9bor6AG0F863pTAtfZWv30nVG1drDzsLctr5zverg0mntO9mWpt3A1aF0dqNrD8MHXJnNFr5bZ3sP53ocVNbBL9sfx1rWQXQDLipZe307vlPwuVx85Kto_fb8ks_XkaQUdVHFFSFKMaySNFMYpxJjLBHNNMpKlfKM67iUVZokNGaUJWlFkwLzUMPlpcJ0Ch4G372z333YWTTGK13XstVhQ0EIR1mKSUYCOhtQ5az3Tldi70wj3UFgJI5ZiyFrMWYdBPejd180ujzhf-EG4HEAglDsbO_acOp_br9EfIpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290871282</pqid></control><display><type>article</type><title>Electroassembly of Chitin Nanoparticles to Construct Freestanding Hydrogels and High Porous Aerogels for Wound Healing</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Guo, Xiaojia ; Xu, Duoduo ; Zhao, Yanan ; Gao, Huimin ; Shi, Xiaowen ; Cai, Jie ; Deng, Hongbing ; Chen, Yun ; Du, Yumin</creator><creatorcontrib>Guo, Xiaojia ; Xu, Duoduo ; Zhao, Yanan ; Gao, Huimin ; Shi, Xiaowen ; Cai, Jie ; Deng, Hongbing ; Chen, Yun ; Du, Yumin</creatorcontrib><description>The construction of polymeric nanocomponents into a hierarchical structure poses great importance for subsequent biomedical applications. Herein, we report for the first time the electroassembly of chitin nanoparticles (14 nm ± 3 nm from transmission electron microscopy) to construct thick and freestanding hydrogels, which can be further dried to obtain high porous and tough aerogels for wound healing. The electroassembly is a simple, straightforward, and controllable process, which crucially depends on the pH of the chitin nanoparticle suspension and the degree of deacetylation of chitin. Interestingly, the electroassembly of chitin nanoparticles is completely reversible, suggesting the physical assembly feature of the freestanding hydrogel. By using supercritical CO2 drying and freeze-drying, chitin aerogels and cryogels can be facilely obtained. Because of the intriguing features (i.e., large surface area, interconnected porous structure, and enhanced hydrophilicity), chitin aerogels demonstrate adorable performance to accelerate the healing of wounds.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b13063</identifier><identifier>PMID: 31429547</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Cell Line ; Chitin - chemistry ; Chitin - pharmacology ; Electrochemical Techniques ; Hydrogels - chemical synthesis ; Hydrogels - chemistry ; Hydrogels - pharmacology ; Mice ; Nanoparticles - chemistry ; Nanoparticles - therapeutic use ; Rats ; Rats, Sprague-Dawley ; Wound Healing - drug effects ; Wounds and Injuries - drug therapy ; Wounds and Injuries - metabolism ; Wounds and Injuries - pathology</subject><ispartof>ACS applied materials &amp; interfaces, 2019-09, Vol.11 (38), p.34766-34776</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-f9c22cc41c678c117a111a038e08dc7989e5daf7663543467f36b19f36944dc13</citedby><cites>FETCH-LOGICAL-a330t-f9c22cc41c678c117a111a038e08dc7989e5daf7663543467f36b19f36944dc13</cites><orcidid>0000-0001-8294-2920 ; 0000-0002-9784-6138 ; 0000-0002-0660-4740 ; 0000-0002-5984-7455</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31429547$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Xiaojia</creatorcontrib><creatorcontrib>Xu, Duoduo</creatorcontrib><creatorcontrib>Zhao, Yanan</creatorcontrib><creatorcontrib>Gao, Huimin</creatorcontrib><creatorcontrib>Shi, Xiaowen</creatorcontrib><creatorcontrib>Cai, Jie</creatorcontrib><creatorcontrib>Deng, Hongbing</creatorcontrib><creatorcontrib>Chen, Yun</creatorcontrib><creatorcontrib>Du, Yumin</creatorcontrib><title>Electroassembly of Chitin Nanoparticles to Construct Freestanding Hydrogels and High Porous Aerogels for Wound Healing</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The construction of polymeric nanocomponents into a hierarchical structure poses great importance for subsequent biomedical applications. Herein, we report for the first time the electroassembly of chitin nanoparticles (14 nm ± 3 nm from transmission electron microscopy) to construct thick and freestanding hydrogels, which can be further dried to obtain high porous and tough aerogels for wound healing. The electroassembly is a simple, straightforward, and controllable process, which crucially depends on the pH of the chitin nanoparticle suspension and the degree of deacetylation of chitin. Interestingly, the electroassembly of chitin nanoparticles is completely reversible, suggesting the physical assembly feature of the freestanding hydrogel. By using supercritical CO2 drying and freeze-drying, chitin aerogels and cryogels can be facilely obtained. Because of the intriguing features (i.e., large surface area, interconnected porous structure, and enhanced hydrophilicity), chitin aerogels demonstrate adorable performance to accelerate the healing of wounds.</description><subject>Animals</subject><subject>Cell Line</subject><subject>Chitin - chemistry</subject><subject>Chitin - pharmacology</subject><subject>Electrochemical Techniques</subject><subject>Hydrogels - chemical synthesis</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogels - pharmacology</subject><subject>Mice</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - therapeutic use</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Wound Healing - drug effects</subject><subject>Wounds and Injuries - drug therapy</subject><subject>Wounds and Injuries - metabolism</subject><subject>Wounds and Injuries - pathology</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EolBYGZFHhJTir3x4rKKWIlXAAGK0HMdpXSVxsROk_ve4SujGcj75fu_p7gFwh9EMI4KfpPKyMTNeYIoSegauMGcsykhMzk89YxNw7f0OBYKg-BJMKGaExyy9Aj-LWqvOWem9bor6AG0F863pTAtfZWv30nVG1drDzsLctr5zverg0mntO9mWpt3A1aF0dqNrD8MHXJnNFr5bZ3sP53ocVNbBL9sfx1rWQXQDLipZe307vlPwuVx85Kto_fb8ks_XkaQUdVHFFSFKMaySNFMYpxJjLBHNNMpKlfKM67iUVZokNGaUJWlFkwLzUMPlpcJ0Ch4G372z333YWTTGK13XstVhQ0EIR1mKSUYCOhtQ5az3Tldi70wj3UFgJI5ZiyFrMWYdBPejd180ujzhf-EG4HEAglDsbO_acOp_br9EfIpA</recordid><startdate>20190925</startdate><enddate>20190925</enddate><creator>Guo, Xiaojia</creator><creator>Xu, Duoduo</creator><creator>Zhao, Yanan</creator><creator>Gao, Huimin</creator><creator>Shi, Xiaowen</creator><creator>Cai, Jie</creator><creator>Deng, Hongbing</creator><creator>Chen, Yun</creator><creator>Du, Yumin</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8294-2920</orcidid><orcidid>https://orcid.org/0000-0002-9784-6138</orcidid><orcidid>https://orcid.org/0000-0002-0660-4740</orcidid><orcidid>https://orcid.org/0000-0002-5984-7455</orcidid></search><sort><creationdate>20190925</creationdate><title>Electroassembly of Chitin Nanoparticles to Construct Freestanding Hydrogels and High Porous Aerogels for Wound Healing</title><author>Guo, Xiaojia ; Xu, Duoduo ; Zhao, Yanan ; Gao, Huimin ; Shi, Xiaowen ; Cai, Jie ; Deng, Hongbing ; Chen, Yun ; Du, Yumin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-f9c22cc41c678c117a111a038e08dc7989e5daf7663543467f36b19f36944dc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Cell Line</topic><topic>Chitin - chemistry</topic><topic>Chitin - pharmacology</topic><topic>Electrochemical Techniques</topic><topic>Hydrogels - chemical synthesis</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogels - pharmacology</topic><topic>Mice</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - therapeutic use</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Wound Healing - drug effects</topic><topic>Wounds and Injuries - drug therapy</topic><topic>Wounds and Injuries - metabolism</topic><topic>Wounds and Injuries - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Xiaojia</creatorcontrib><creatorcontrib>Xu, Duoduo</creatorcontrib><creatorcontrib>Zhao, Yanan</creatorcontrib><creatorcontrib>Gao, Huimin</creatorcontrib><creatorcontrib>Shi, Xiaowen</creatorcontrib><creatorcontrib>Cai, Jie</creatorcontrib><creatorcontrib>Deng, Hongbing</creatorcontrib><creatorcontrib>Chen, Yun</creatorcontrib><creatorcontrib>Du, Yumin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Xiaojia</au><au>Xu, Duoduo</au><au>Zhao, Yanan</au><au>Gao, Huimin</au><au>Shi, Xiaowen</au><au>Cai, Jie</au><au>Deng, Hongbing</au><au>Chen, Yun</au><au>Du, Yumin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electroassembly of Chitin Nanoparticles to Construct Freestanding Hydrogels and High Porous Aerogels for Wound Healing</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-09-25</date><risdate>2019</risdate><volume>11</volume><issue>38</issue><spage>34766</spage><epage>34776</epage><pages>34766-34776</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The construction of polymeric nanocomponents into a hierarchical structure poses great importance for subsequent biomedical applications. Herein, we report for the first time the electroassembly of chitin nanoparticles (14 nm ± 3 nm from transmission electron microscopy) to construct thick and freestanding hydrogels, which can be further dried to obtain high porous and tough aerogels for wound healing. The electroassembly is a simple, straightforward, and controllable process, which crucially depends on the pH of the chitin nanoparticle suspension and the degree of deacetylation of chitin. Interestingly, the electroassembly of chitin nanoparticles is completely reversible, suggesting the physical assembly feature of the freestanding hydrogel. By using supercritical CO2 drying and freeze-drying, chitin aerogels and cryogels can be facilely obtained. Because of the intriguing features (i.e., large surface area, interconnected porous structure, and enhanced hydrophilicity), chitin aerogels demonstrate adorable performance to accelerate the healing of wounds.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31429547</pmid><doi>10.1021/acsami.9b13063</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8294-2920</orcidid><orcidid>https://orcid.org/0000-0002-9784-6138</orcidid><orcidid>https://orcid.org/0000-0002-0660-4740</orcidid><orcidid>https://orcid.org/0000-0002-5984-7455</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2019-09, Vol.11 (38), p.34766-34776
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2290871282
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Animals
Cell Line
Chitin - chemistry
Chitin - pharmacology
Electrochemical Techniques
Hydrogels - chemical synthesis
Hydrogels - chemistry
Hydrogels - pharmacology
Mice
Nanoparticles - chemistry
Nanoparticles - therapeutic use
Rats
Rats, Sprague-Dawley
Wound Healing - drug effects
Wounds and Injuries - drug therapy
Wounds and Injuries - metabolism
Wounds and Injuries - pathology
title Electroassembly of Chitin Nanoparticles to Construct Freestanding Hydrogels and High Porous Aerogels for Wound Healing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electroassembly%20of%20Chitin%20Nanoparticles%20to%20Construct%20Freestanding%20Hydrogels%20and%20High%20Porous%20Aerogels%20for%20Wound%20Healing&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Guo,%20Xiaojia&rft.date=2019-09-25&rft.volume=11&rft.issue=38&rft.spage=34766&rft.epage=34776&rft.pages=34766-34776&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b13063&rft_dat=%3Cproquest_cross%3E2290871282%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a330t-f9c22cc41c678c117a111a038e08dc7989e5daf7663543467f36b19f36944dc13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2290871282&rft_id=info:pmid/31429547&rfr_iscdi=true