Loading…

Pleiotrophin increases neurite length and number of spiral ganglion neurons in vitro

Acoustic trauma, aging, genetic defects or ototoxic drugs are causes for sensorineural hearing loss involving sensory hair cell death and secondary degeneration of spiral ganglion neurons. Auditory implants are the only available therapy for severe to profound sensorineural hearing loss when hearing...

Full description

Saved in:
Bibliographic Details
Published in:Experimental brain research 2019-11, Vol.237 (11), p.2983-2993
Main Authors: Bertram, Sebastian, Roll, Lars, Reinhard, Jacqueline, Groß, Katharina, Dazert, Stefan, Faissner, Andreas, Volkenstein, Stefan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c507t-ac1f0edb4de8ab98993554cca78eaa31a147b9d7ebec6445cc0e5d5bdff809853
cites cdi_FETCH-LOGICAL-c507t-ac1f0edb4de8ab98993554cca78eaa31a147b9d7ebec6445cc0e5d5bdff809853
container_end_page 2993
container_issue 11
container_start_page 2983
container_title Experimental brain research
container_volume 237
creator Bertram, Sebastian
Roll, Lars
Reinhard, Jacqueline
Groß, Katharina
Dazert, Stefan
Faissner, Andreas
Volkenstein, Stefan
description Acoustic trauma, aging, genetic defects or ototoxic drugs are causes for sensorineural hearing loss involving sensory hair cell death and secondary degeneration of spiral ganglion neurons. Auditory implants are the only available therapy for severe to profound sensorineural hearing loss when hearing aids do not provide a sufficient speech discrimination anymore. Neurotrophic factors represent potential therapeutic candidates to improve the performance of cochlear implants (CIs) by the support of spiral ganglion neurons (SGNs). Here, we investigated the effect of pleiotrophin (PTN), a well-described neurotrophic factor for different types of neurons that is expressed in the postnatal mouse cochlea. PTN knockout mice exhibit severe deficits in auditory brainstem responses, which indicates the importance of PTN in inner ear development and function and makes it a promising candidate to support SGNs. Using organotypic explants and dissociated SGN cultures, we investigated the influence of PTN on the number of neurons, neurite number and neurite length. PTN significantly increased the number and neurite length of dissociated SGNs. We further verified the expression of important PTN-associated receptors in the SG. mRNA of anaplastic lymphoma kinase, α v integrin, β 3 integrin, receptor protein tyrosine phosphatase β/ζ, neuroglycan C, low-density lipoprotein receptor-related protein 1 and syndecan 3 was detected in the inner ear. These results suggest that PTN may be a novel candidate to improve sensorineural hearing loss treatment in the future.
doi_str_mv 10.1007/s00221-019-05644-6
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2290906562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A602851206</galeid><sourcerecordid>A602851206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-ac1f0edb4de8ab98993554cca78eaa31a147b9d7ebec6445cc0e5d5bdff809853</originalsourceid><addsrcrecordid>eNp9ktFv1SAYxYlxcdfpP-CDITEx86Hzoy0tPC7LpkuWaHQ-E0q_9rJQuEJr9L8fd3e6XWMMDwT4nQOcHEJeMThhAO37BFCWrAAmC-BNXRfNE7JidVUWjEHzlKwAWF3UgslD8jylm-2yauEZOawYZ5wLsSLXnx3aMMewWVtPrTcRdcJEPS7Rzkgd-nFeU-176pepw0jDQNPGRu3oqP3obPB3cPApy-kPm71ekINBu4Qv7-cj8u3i_PrsY3H16cPl2elVYTi0c6ENGwD7ru5R6E4KKSvOa2N0K1DrimlWt53sW-zQ5O9xYwB5z7t-GARIwasjcrzz3cTwfcE0q8kmg85pj2FJqiwlSGh4U2b0zV_oTViiz6_LlJD5pobBAzVqh8r6ISejzdZUnTZQCs5KaDJ18g8qjx4na4LHweb9PcG7PUFmZvw5j3pJSV1-_bLPvn3ErlG7eZ2CW-YcdNoHyx1oYkgp4qA20U46_lIM1LYfatcPlfuh7vqhtqLX9zEs3YT9H8nvQmSg2gEpH_kR40NO_7G9BaFtwyI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289147610</pqid></control><display><type>article</type><title>Pleiotrophin increases neurite length and number of spiral ganglion neurons in vitro</title><source>Social Science Premium Collection</source><source>Springer Link</source><creator>Bertram, Sebastian ; Roll, Lars ; Reinhard, Jacqueline ; Groß, Katharina ; Dazert, Stefan ; Faissner, Andreas ; Volkenstein, Stefan</creator><creatorcontrib>Bertram, Sebastian ; Roll, Lars ; Reinhard, Jacqueline ; Groß, Katharina ; Dazert, Stefan ; Faissner, Andreas ; Volkenstein, Stefan</creatorcontrib><description>Acoustic trauma, aging, genetic defects or ototoxic drugs are causes for sensorineural hearing loss involving sensory hair cell death and secondary degeneration of spiral ganglion neurons. Auditory implants are the only available therapy for severe to profound sensorineural hearing loss when hearing aids do not provide a sufficient speech discrimination anymore. Neurotrophic factors represent potential therapeutic candidates to improve the performance of cochlear implants (CIs) by the support of spiral ganglion neurons (SGNs). Here, we investigated the effect of pleiotrophin (PTN), a well-described neurotrophic factor for different types of neurons that is expressed in the postnatal mouse cochlea. PTN knockout mice exhibit severe deficits in auditory brainstem responses, which indicates the importance of PTN in inner ear development and function and makes it a promising candidate to support SGNs. Using organotypic explants and dissociated SGN cultures, we investigated the influence of PTN on the number of neurons, neurite number and neurite length. PTN significantly increased the number and neurite length of dissociated SGNs. We further verified the expression of important PTN-associated receptors in the SG. mRNA of anaplastic lymphoma kinase, α v integrin, β 3 integrin, receptor protein tyrosine phosphatase β/ζ, neuroglycan C, low-density lipoprotein receptor-related protein 1 and syndecan 3 was detected in the inner ear. These results suggest that PTN may be a novel candidate to improve sensorineural hearing loss treatment in the future.</description><identifier>ISSN: 0014-4819</identifier><identifier>EISSN: 1432-1106</identifier><identifier>DOI: 10.1007/s00221-019-05644-6</identifier><identifier>PMID: 31515588</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aging ; Animals ; Auditory discrimination ; Biomedical and Life Sciences ; Biomedicine ; Brain stem ; Carrier Proteins - physiology ; Cell death ; Cochlea ; Cytokines - deficiency ; Cytokines - physiology ; Degeneration ; Evoked Potentials, Auditory, Brain Stem - physiology ; Explants ; Female ; Hearing loss ; Hearing Loss, Sensorineural - pathology ; Hearing Loss, Sensorineural - physiopathology ; Hearing protection ; HEK293 Cells ; Humans ; Inner ear ; Lymphoma ; Male ; Mice ; Mice, Knockout ; mRNA ; Neurites - physiology ; Neurology ; Neurons ; Neurons - physiology ; Neurosciences ; Neurotrophic factors ; Ototoxicity ; Pleiotrophin ; Protein-tyrosine kinase ; Protein-tyrosine-phosphatase ; Receptor density ; Research Article ; Spiral ganglion ; Spiral Ganglion - physiology ; Syndecan ; Trauma</subject><ispartof>Experimental brain research, 2019-11, Vol.237 (11), p.2983-2993</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Experimental Brain Research is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-ac1f0edb4de8ab98993554cca78eaa31a147b9d7ebec6445cc0e5d5bdff809853</citedby><cites>FETCH-LOGICAL-c507t-ac1f0edb4de8ab98993554cca78eaa31a147b9d7ebec6445cc0e5d5bdff809853</cites><orcidid>0000-0002-6977-101X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2289147610/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2289147610?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21394,27924,27925,33611,33612,43733,74221</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31515588$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bertram, Sebastian</creatorcontrib><creatorcontrib>Roll, Lars</creatorcontrib><creatorcontrib>Reinhard, Jacqueline</creatorcontrib><creatorcontrib>Groß, Katharina</creatorcontrib><creatorcontrib>Dazert, Stefan</creatorcontrib><creatorcontrib>Faissner, Andreas</creatorcontrib><creatorcontrib>Volkenstein, Stefan</creatorcontrib><title>Pleiotrophin increases neurite length and number of spiral ganglion neurons in vitro</title><title>Experimental brain research</title><addtitle>Exp Brain Res</addtitle><addtitle>Exp Brain Res</addtitle><description>Acoustic trauma, aging, genetic defects or ototoxic drugs are causes for sensorineural hearing loss involving sensory hair cell death and secondary degeneration of spiral ganglion neurons. Auditory implants are the only available therapy for severe to profound sensorineural hearing loss when hearing aids do not provide a sufficient speech discrimination anymore. Neurotrophic factors represent potential therapeutic candidates to improve the performance of cochlear implants (CIs) by the support of spiral ganglion neurons (SGNs). Here, we investigated the effect of pleiotrophin (PTN), a well-described neurotrophic factor for different types of neurons that is expressed in the postnatal mouse cochlea. PTN knockout mice exhibit severe deficits in auditory brainstem responses, which indicates the importance of PTN in inner ear development and function and makes it a promising candidate to support SGNs. Using organotypic explants and dissociated SGN cultures, we investigated the influence of PTN on the number of neurons, neurite number and neurite length. PTN significantly increased the number and neurite length of dissociated SGNs. We further verified the expression of important PTN-associated receptors in the SG. mRNA of anaplastic lymphoma kinase, α v integrin, β 3 integrin, receptor protein tyrosine phosphatase β/ζ, neuroglycan C, low-density lipoprotein receptor-related protein 1 and syndecan 3 was detected in the inner ear. These results suggest that PTN may be a novel candidate to improve sensorineural hearing loss treatment in the future.</description><subject>Aging</subject><subject>Animals</subject><subject>Auditory discrimination</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain stem</subject><subject>Carrier Proteins - physiology</subject><subject>Cell death</subject><subject>Cochlea</subject><subject>Cytokines - deficiency</subject><subject>Cytokines - physiology</subject><subject>Degeneration</subject><subject>Evoked Potentials, Auditory, Brain Stem - physiology</subject><subject>Explants</subject><subject>Female</subject><subject>Hearing loss</subject><subject>Hearing Loss, Sensorineural - pathology</subject><subject>Hearing Loss, Sensorineural - physiopathology</subject><subject>Hearing protection</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Inner ear</subject><subject>Lymphoma</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>mRNA</subject><subject>Neurites - physiology</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Neurotrophic factors</subject><subject>Ototoxicity</subject><subject>Pleiotrophin</subject><subject>Protein-tyrosine kinase</subject><subject>Protein-tyrosine-phosphatase</subject><subject>Receptor density</subject><subject>Research Article</subject><subject>Spiral ganglion</subject><subject>Spiral Ganglion - physiology</subject><subject>Syndecan</subject><subject>Trauma</subject><issn>0014-4819</issn><issn>1432-1106</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>M2R</sourceid><recordid>eNp9ktFv1SAYxYlxcdfpP-CDITEx86Hzoy0tPC7LpkuWaHQ-E0q_9rJQuEJr9L8fd3e6XWMMDwT4nQOcHEJeMThhAO37BFCWrAAmC-BNXRfNE7JidVUWjEHzlKwAWF3UgslD8jylm-2yauEZOawYZ5wLsSLXnx3aMMewWVtPrTcRdcJEPS7Rzkgd-nFeU-176pepw0jDQNPGRu3oqP3obPB3cPApy-kPm71ekINBu4Qv7-cj8u3i_PrsY3H16cPl2elVYTi0c6ENGwD7ru5R6E4KKSvOa2N0K1DrimlWt53sW-zQ5O9xYwB5z7t-GARIwasjcrzz3cTwfcE0q8kmg85pj2FJqiwlSGh4U2b0zV_oTViiz6_LlJD5pobBAzVqh8r6ISejzdZUnTZQCs5KaDJ18g8qjx4na4LHweb9PcG7PUFmZvw5j3pJSV1-_bLPvn3ErlG7eZ2CW-YcdNoHyx1oYkgp4qA20U46_lIM1LYfatcPlfuh7vqhtqLX9zEs3YT9H8nvQmSg2gEpH_kR40NO_7G9BaFtwyI</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Bertram, Sebastian</creator><creator>Roll, Lars</creator><creator>Reinhard, Jacqueline</creator><creator>Groß, Katharina</creator><creator>Dazert, Stefan</creator><creator>Faissner, Andreas</creator><creator>Volkenstein, Stefan</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>0-V</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>88J</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2R</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6977-101X</orcidid></search><sort><creationdate>20191101</creationdate><title>Pleiotrophin increases neurite length and number of spiral ganglion neurons in vitro</title><author>Bertram, Sebastian ; Roll, Lars ; Reinhard, Jacqueline ; Groß, Katharina ; Dazert, Stefan ; Faissner, Andreas ; Volkenstein, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-ac1f0edb4de8ab98993554cca78eaa31a147b9d7ebec6445cc0e5d5bdff809853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aging</topic><topic>Animals</topic><topic>Auditory discrimination</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain stem</topic><topic>Carrier Proteins - physiology</topic><topic>Cell death</topic><topic>Cochlea</topic><topic>Cytokines - deficiency</topic><topic>Cytokines - physiology</topic><topic>Degeneration</topic><topic>Evoked Potentials, Auditory, Brain Stem - physiology</topic><topic>Explants</topic><topic>Female</topic><topic>Hearing loss</topic><topic>Hearing Loss, Sensorineural - pathology</topic><topic>Hearing Loss, Sensorineural - physiopathology</topic><topic>Hearing protection</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Inner ear</topic><topic>Lymphoma</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>mRNA</topic><topic>Neurites - physiology</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Neurotrophic factors</topic><topic>Ototoxicity</topic><topic>Pleiotrophin</topic><topic>Protein-tyrosine kinase</topic><topic>Protein-tyrosine-phosphatase</topic><topic>Receptor density</topic><topic>Research Article</topic><topic>Spiral ganglion</topic><topic>Spiral Ganglion - physiology</topic><topic>Syndecan</topic><topic>Trauma</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bertram, Sebastian</creatorcontrib><creatorcontrib>Roll, Lars</creatorcontrib><creatorcontrib>Reinhard, Jacqueline</creatorcontrib><creatorcontrib>Groß, Katharina</creatorcontrib><creatorcontrib>Dazert, Stefan</creatorcontrib><creatorcontrib>Faissner, Andreas</creatorcontrib><creatorcontrib>Volkenstein, Stefan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>Social Science Database (ProQuest)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Experimental brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bertram, Sebastian</au><au>Roll, Lars</au><au>Reinhard, Jacqueline</au><au>Groß, Katharina</au><au>Dazert, Stefan</au><au>Faissner, Andreas</au><au>Volkenstein, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pleiotrophin increases neurite length and number of spiral ganglion neurons in vitro</atitle><jtitle>Experimental brain research</jtitle><stitle>Exp Brain Res</stitle><addtitle>Exp Brain Res</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>237</volume><issue>11</issue><spage>2983</spage><epage>2993</epage><pages>2983-2993</pages><issn>0014-4819</issn><eissn>1432-1106</eissn><abstract>Acoustic trauma, aging, genetic defects or ototoxic drugs are causes for sensorineural hearing loss involving sensory hair cell death and secondary degeneration of spiral ganglion neurons. Auditory implants are the only available therapy for severe to profound sensorineural hearing loss when hearing aids do not provide a sufficient speech discrimination anymore. Neurotrophic factors represent potential therapeutic candidates to improve the performance of cochlear implants (CIs) by the support of spiral ganglion neurons (SGNs). Here, we investigated the effect of pleiotrophin (PTN), a well-described neurotrophic factor for different types of neurons that is expressed in the postnatal mouse cochlea. PTN knockout mice exhibit severe deficits in auditory brainstem responses, which indicates the importance of PTN in inner ear development and function and makes it a promising candidate to support SGNs. Using organotypic explants and dissociated SGN cultures, we investigated the influence of PTN on the number of neurons, neurite number and neurite length. PTN significantly increased the number and neurite length of dissociated SGNs. We further verified the expression of important PTN-associated receptors in the SG. mRNA of anaplastic lymphoma kinase, α v integrin, β 3 integrin, receptor protein tyrosine phosphatase β/ζ, neuroglycan C, low-density lipoprotein receptor-related protein 1 and syndecan 3 was detected in the inner ear. These results suggest that PTN may be a novel candidate to improve sensorineural hearing loss treatment in the future.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31515588</pmid><doi>10.1007/s00221-019-05644-6</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6977-101X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0014-4819
ispartof Experimental brain research, 2019-11, Vol.237 (11), p.2983-2993
issn 0014-4819
1432-1106
language eng
recordid cdi_proquest_miscellaneous_2290906562
source Social Science Premium Collection; Springer Link
subjects Aging
Animals
Auditory discrimination
Biomedical and Life Sciences
Biomedicine
Brain stem
Carrier Proteins - physiology
Cell death
Cochlea
Cytokines - deficiency
Cytokines - physiology
Degeneration
Evoked Potentials, Auditory, Brain Stem - physiology
Explants
Female
Hearing loss
Hearing Loss, Sensorineural - pathology
Hearing Loss, Sensorineural - physiopathology
Hearing protection
HEK293 Cells
Humans
Inner ear
Lymphoma
Male
Mice
Mice, Knockout
mRNA
Neurites - physiology
Neurology
Neurons
Neurons - physiology
Neurosciences
Neurotrophic factors
Ototoxicity
Pleiotrophin
Protein-tyrosine kinase
Protein-tyrosine-phosphatase
Receptor density
Research Article
Spiral ganglion
Spiral Ganglion - physiology
Syndecan
Trauma
title Pleiotrophin increases neurite length and number of spiral ganglion neurons in vitro
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A26%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pleiotrophin%20increases%20neurite%20length%20and%20number%20of%20spiral%20ganglion%20neurons%20in%20vitro&rft.jtitle=Experimental%20brain%20research&rft.au=Bertram,%20Sebastian&rft.date=2019-11-01&rft.volume=237&rft.issue=11&rft.spage=2983&rft.epage=2993&rft.pages=2983-2993&rft.issn=0014-4819&rft.eissn=1432-1106&rft_id=info:doi/10.1007/s00221-019-05644-6&rft_dat=%3Cgale_proqu%3EA602851206%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c507t-ac1f0edb4de8ab98993554cca78eaa31a147b9d7ebec6445cc0e5d5bdff809853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2289147610&rft_id=info:pmid/31515588&rft_galeid=A602851206&rfr_iscdi=true