Loading…

Surface erosion events controlled the evolution of plate tectonics on Earth

Plate tectonics is among the most important geological processes on Earth, but its emergence and evolution remain unclear. Here we extrapolate models of present-day plate tectonics to the past and propose that since about three billion years ago the rise of continents and the accumulation of sedimen...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2019-06, Vol.570 (7759), p.52-57
Main Authors: Sobolev, Stephan V., Brown, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Plate tectonics is among the most important geological processes on Earth, but its emergence and evolution remain unclear. Here we extrapolate models of present-day plate tectonics to the past and propose that since about three billion years ago the rise of continents and the accumulation of sediments at continental edges and in trenches has provided lubrication for the stabilization of subduction and has been crucial in the development of plate tectonics on Earth. We conclude that the two largest surface erosion and subduction lubrication events occurred after the Palaeoproterozoic Huronian global glaciations (2.45 to 2.2 billion years ago), leading to the formation of the Columbia supercontinent, and after the Neoproterozoic ‘snowball’ Earth glaciations (0.75 to 0.63 billion years ago). The snowball Earth event followed the ‘boring billion’—a period of reduced plate tectonic activity about 1.75 to 0.75 billion years ago that was probably caused by a shortfall of sediments in trenches—and it kick-started the modern episode of active plate tectonics. The rise of continents and the accumulation of sediments in trenches since about three billion years ago has had a crucial role in the emergence and evolution of plate tectonics on Earth.
ISSN:0028-0836
1476-4687
DOI:10.1038/s41586-019-1258-4