Loading…

Achieving gastroresistance without coating: Formulation of capsule shells from enteric polymers

[Display omitted] Capsules are a widely used oral dosage form due to their simplicity and ease of manufacture. They are equally popular for both pharmaceutical and nutraceutical products and since they do not need extensive formulation development, it is a dosage form of choice for new drugs undergo...

Full description

Saved in:
Bibliographic Details
Published in:European journal of pharmaceutics and biopharmaceutics 2019-11, Vol.144, p.174-179
Main Authors: Barbosa, Joao A.C., Al-Kauraishi, Maha M., Smith, Alan M., Conway, Barbara R., Merchant, Hamid A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Capsules are a widely used oral dosage form due to their simplicity and ease of manufacture. They are equally popular for both pharmaceutical and nutraceutical products and since they do not need extensive formulation development, it is a dosage form of choice for new drugs undergoing animal or clinical trials. In addition to the standard hard-gelatin or cellulose-based vegetarian capsules, functional capsules such as those with built-in gastroresistance would be of great value. In this work, commonly used enteric polymers were investigated for the production of hard-capsules. The polymers used in this study included cellulose derivatives (HPMC AS-LF and HP-55) and acrylic/methacrylic acid derivatives (EUDRAGIT L100 and S100). A range of concentrations of polymers and plasticisers were tested to optimise the formulation for the production of capsule shells with desirable physicochemical and gastroresistance characteristics. Drug release from optimised capsules produced from HPMC AS-LF, HP-55, EUDRAGIT L100 and S100 was shown to be comparable to drug release from corresponding polymer-coated tablets in both compendial and physiological bicarbonate buffer. In summary, herein we report a simple method for producing enteric capsule shells which do not need an additional coating step which, if validated at large scale, can significantly reduce the cost of manufacturing of conventional enteric coated dosage forms. These capsules are also likely to improve the inter-tablet variability in post-gastric drug release inherent in conventional dosage forms due to coating variability.
ISSN:0939-6411
1873-3441
DOI:10.1016/j.ejpb.2019.09.015